Question

5) 5) In the figure, block A has a mass of 3.00 kg. It rests on a smooth horizontal table and is connected by a very light ho
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution AN free Body diagram of A. AL free Body diagram of B : for A = 7 Toma a 3a for botho Racceleration for B 7 mg-To 20

Add a comment
Know the answer?
Add Answer to:
5) 5) In the figure, block A has a mass of 3.00 kg. It rests on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. Block A rests on a smooth (frictionless) table and is connected to block B by...

    3. Block A rests on a smooth (frictionless) table and is connected to block B by a light rope and a frictionless pulley, as shown in the figure below. A (a) (5 marks) If block A has a mass of 6.00 kg, and block B has a mass of 2.00 kg, what is the acceleration of the system after it has been released? (b) (5 marks) What is the magnitude of the force of tension in the rope?

  • A light rope is attached to a block with mass 3.00 kg that rests on a...

    A light rope is attached to a block with mass 3.00 kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 15.3 N . part a) Draw free-body diagram for the 3.00-kg block. Assume block is moving to the right. Draw the vectors starting at a black dot. The location...

  • A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string...

    A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string that hangs vertically over a friction-less pulley on the table's edge. From the other end of the string hangs a 0.12 kg mass. What minimum coefficient of static friction μ s between the block and table will keep the system at rest? Find the block's acceleration if μ k =0.20.

  • A block A with a mass of 3 kg rests on a horizontal table top. The...

    A block A with a mass of 3 kg rests on a horizontal table top. The coefficient of kinetic friction, μk = 0.5. A horizontal string is attached to A and passes over a massless, frictionless pulley, and block B with mass 2 kg hangs from it. Because of the pull of gravity, the masses accelerate. What is the Tension in the string (in Newtons)?

  • Block A has a mass of 20 kg and rests on a frictionless table. A cord...

    Block A has a mass of 20 kg and rests on a frictionless table. A cord attached to block A extends horizontally to a pulley at the edge of the table, block B has a 10 kg mass and hangs over the edge attached to the string. How would I calculate the tension in the cord?

  • Block A in (Figure 1) has mass 1.00 kg, and block B has mass 3.00 kg....

    Block A in (Figure 1) has mass 1.00 kg, and block B has mass 3.00 kg. The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. The spring has force constant 711 N/m and is initially compressed 0.225 m from its original length. a.What is the...

  • 3. A 5.00 kg block rests on a level frictionless surface and is attached by a...

    3. A 5.00 kg block rests on a level frictionless surface and is attached by a light string to an 7.00 kg hanging mass where the string passes over a massless, frictionless pulley. Ifg=9.80 m/s, what is the tension in the connecting string? 4. A light string connects a 16 kg mass and a 4.0 kg mass over a massless, frictionless pulley. (a) If g= 9.8 m/s, what is the acceleration of the system when released? (b) What is the...

  • Block A has a mass of 2.87 kg and block B has mass 1.98 kg. Block...

    Block A has a mass of 2.87 kg and block B has mass 1.98 kg. Block B is at the height ℎ = 1.50 m when the blocks are released from rest. Determine the speed of block B just before it bumps into the ground: (a) if block A slides frictionlessly along its horizontal planet; and (b) if the sliding friction number between block A and the ground is 0.18. (Assume that the string and pulley have negligible masses and...

  • The block A weighs 74 kg and rests on a smooth surface. The block B weighs...

    The block A weighs 74 kg and rests on a smooth surface. The block B weighs 93 kg. Determine the tension in the string P for equilibrium in N and assuming negligible friction at the pulley. 130 Answer Question 5 Not yet answered Marked out of 2.00 F Flag question Calculate the tension in the string Q for equilibrium in N. Answer Question 6 Not yet answered Marked out of 2.00 Flag question Calculate the normal reaction at the block...

  • A wooden block of mass 7.50 kg rests on a horizontal frictionless surface. A 3.00 g...

    A wooden block of mass 7.50 kg rests on a horizontal frictionless surface. A 3.00 g bullet traveling horizontally at 700 m/s suddenly hits and becomes embedded in the wooden block. Find the speed of the block after the impact.?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT