Question

A block A with a mass of 3 kg rests on a horizontal table top. The...

A block A with a mass of 3 kg rests on a horizontal table top. The coefficient of kinetic friction, μk = 0.5. A horizontal string is attached to A and passes over a massless, frictionless pulley, and block B with mass 2 kg hangs from it. Because of the pull of gravity, the masses accelerate. What is the Tension in the string (in Newtons)?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block A with a mass of 3 kg rests on a horizontal table top. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light...

    A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light string that passes over a massless and frictionless pulley as shown. The coefficient of kinetic friction between m1 and the horizontal plane is μk = 0.42. The coefficient of kinetic friction between m2 and the θ = 34.5° incline is μk = 0.35. br /> Find the tension in the string in N.

  • 3. A 5.00 kg block rests on a level frictionless surface and is attached by a...

    3. A 5.00 kg block rests on a level frictionless surface and is attached by a light string to an 7.00 kg hanging mass where the string passes over a massless, frictionless pulley. Ifg=9.80 m/s, what is the tension in the connecting string? 4. A light string connects a 16 kg mass and a 4.0 kg mass over a massless, frictionless pulley. (a) If g= 9.8 m/s, what is the acceleration of the system when released? (b) What is the...

  • A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string...

    A wooden block with mass 0.37 kg rests on a horizontal table, connected to a string that hangs vertically over a friction-less pulley on the table's edge. From the other end of the string hangs a 0.12 kg mass. What minimum coefficient of static friction μ s between the block and table will keep the system at rest? Find the block's acceleration if μ k =0.20.

  • Block A has a mass of 20 kg and rests on a frictionless table. A cord...

    Block A has a mass of 20 kg and rests on a frictionless table. A cord attached to block A extends horizontally to a pulley at the edge of the table, block B has a 10 kg mass and hangs over the edge attached to the string. How would I calculate the tension in the cord?

  • A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The...

    A block of mass m1= 4.00 kg moves on the surface of a horizontal table. The coefficient of kinetic friction k between the table top and m1 is equal to 0.350. Block 2 of mass m2= 2.00 kg is tied to m1 via a string that passes over a frictionless, massless pulley. The two blocks start from rest and m2 drops by a distance L =1.75 m to the floor. Use the work-energy theorem to determine the speed v of...

  • Block A in the figure has mass mA = 4.20 kg, and block B has mass...

    Block A in the figure has mass mA = 4.20 kg, and block B has mass mB = 2.40 kg. The coefficient of kinetic friction between block B and the horizontal plane is μk = 0.520. The inclined plane is frictionless and at angle θ = 34.0°. The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 23.0 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.30. (Assume gravity acts toward the +ydirection and the +x-axis is parallel to the surface and to the right.) (a) What is...

  • Block B, with mass 5.00 kg, rests on block A, with mass 8.00kg. There is no...

    Block B, with mass 5.00 kg, rests on block A, with mass 8.00kg. There is no friction between the table and block A, but the coefficient of static friction between block A and B is 0.750. A "massless" string attached to block A passes over a frictionless pulley and block C is suspended from the other end of the string. If we want ALL the blocks moving together with the same acceleration, the largest possible mass that block C can...

  • A block of mass m1- 8.2 kg is at rest on a plane that makes an...

    A block of mass m1- 8.2 kg is at rest on a plane that makes an angle of 9 30° above the horizontal. The coefficient of kinetic friction between the block and the plane is k-0.100. The block is attached to a second block of mass m2- 17.8 kg that hangs freely by a string that passes over a frictionless, massless pulley (see the Figure). Calculate the speed when the second block has fallen 9.7 m. (Your result must contain...

  •  A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless...

     A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.4 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.87 m. 1-How much work is done by gravity on the two block system? 2) How much work is done by the normal force on m1? 3) What is the final speed of the two blocks? 4)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT