Question

The 3 kg/s flow rate milk (10 % dry matter) is dried with spray dryer to form milk powder (95 % dry matter). The process data

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
The 3 kg/s flow rate milk (10 % dry matter) is dried with spray dryer to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Q's d and e Lactose powder is being dried at atmospheric pressure at a rate of...

    Q's d and e Lactose powder is being dried at atmospheric pressure at a rate of 12.0 [kg/s in a continuous dryer. Lactose powder enters the dryer at 20 [C] and with 10% water content (by mass) and leaves at 35 (C) with 1% water. Air at 50.0*C(dry-bulb) and 22 [C] wet-bulb temperature is used for this drying process. The air exits the dryer saturated at 25 ["C). Assume that the specific heats of water and lactose powder are independent...

  • Problem 5.16 5.16. A stream of air (21 mole% 02, the rest N2) flowing at a rate of 100 kg/h is mixed with a stream...

    Problem 5.16 5.16. A stream of air (21 mole% 02, the rest N2) flowing at a rate of 100 kg/h is mixed with a stream of CO. The CO; enters the mixer at a rate of 20.0 m/h at 150°C and 1.5 bar. What is the mole percent of CO, in the product stream? 5. Problem 5.17 S.17. Spray drying is a process in which a liquid containing dissolved or suspended solids is injected into a chamber through a spray...

  • 8.12 Dry, compressed air at Tm.i75°C, p-10 atm, with a mass flow rate of 0.001 kg/s,...

    8.12 Dry, compressed air at Tm.i75°C, p-10 atm, with a mass flow rate of 0.001 kg/s, enters a 30-mm-diameter, 5-m-long tube whose surface is at Ts - 25°C. (a) Determine the thermal entry length, the mean temperature of the air at the tube outlet, the rate of heat transfer from the air to the tube wall, and the power required to flow the air through the tube. For these conditions the fully developed heat transfer coefficient is h- 3.58 W/m2...

  • QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economize...

    QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economizer inside a boiler. The boiler is a cross flow heat exchanger with single pass, shell fluid mixed and other fluid unmixed. The average water velocity in the 1.5 cm diameter (D) tube is 1.27 m/s. On the shell side, hot air (C,-1.0341 kJ/kgK) was used as the heating fluid with 7.3 kg/s of it entering the exchanger...

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe.

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe.

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe.

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe.

  • Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters...

    Hot water with the mass flow rate of 3 kg/s and temperature of 90 C enters a 2 inch copper pipe with the length of 3 m. The pipe is exposed to cold air at the constant temperature of 1C and wind velocity is 5 m/s. Find the outlet temperature of water and the rate of heat loss from the pipe. P2: 20%

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT