Question

QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economizer inside a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

assumina, a mee 3.5 The no.of hibe . ค-. 0.50 T c.o= 15 .25418 27 93.262-319 8x 3. 3 X425 い1 eYce 42,9 66.s- 2S alue o 66 구5 92 5

Add a comment
Know the answer?
Add Answer to:
QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economize...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Cold water with properties as shown in Table 4 flows at rate of 4 kg/s is...

    Cold water with properties as shown in Table 4 flows at rate of 4 kg/s is heated from 28 oC to 54 oC in a shell-and-tube heat exchanger as shown in Figure 4.The cold water inters the tubes through thin-walled tubes, each tube has diameter of 19 mm, and the average velocity inside each tube is 0.355 m /s. The shell side, one pass is used with hot water as the heating fluid 1.8 kg/s entering the exchanger at 93...

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has...

    Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has a heat capacity rate of 2310 W/K and inlet and outlet temperatures of 25°C and 150°C respectively. The hot fluid has a heat capacity rate of 2000 W/K and an inlet temperature of 325°C. If the cold fluid can be considered mixed and the hot fluid unmixed, find the overall heat transfer coefficient, u, in W/m2.K, and the outlet temperature, in °C, of the...

  • An organic liquid is heated from 20°C to 40°C by hot water in a 1:1 pass...

    An organic liquid is heated from 20°C to 40°C by hot water in a 1:1 pass shell-and- tube heat exchanger in counter-current flow. The inlet temperature of the water stream is 85oC and flows in the shell side. The organic liquid flows through a bundle of 200 tubes of outside diameter 21 mm with a wall thickness of 2 mm. The flows of the organic liquid and water are 40 kg s and 15 kg s1, respectively (a) Calculate the...

  • 11.20 Heat exchanger of counter flow arrangement with temperatures at inlet of hot and cold fluids...

    11.20 Heat exchanger of counter flow arrangement with temperatures at inlet of hot and cold fluids are (200°C) and (60°C) gave outlet temperature of (110°C) for both sides as the surfaces were clean. After long time of use for same the inlet temperatures and flow rate, the hot fluid outlet was (130°C). Find the change in the overall heat transfer coefficient and the heat transfer values by percentage. Ans.: -37.4%, -22.2% 11.21 A liquid with a specific heat of (3200J/kg....

  • Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water...

    Question 3 A counter flow single pass double pipe heat exchanger is supplied with hot water at 120°C that is to be cooled by water entering at 20°C. The mass flow rate of the hot stream is 5 kg/s, and that of the cold stream is 6 kg/s. The specific heat capacity of both fluids may be taken as 4180 J/kg.K. The overall U value is 1500W/m2.K, and the surface area for heat transfer is 20 m2 a) Determine the...

  • Note: Please always outline your assumptions, draw a sketch of the problem and provide a detailed...

    Note: Please always outline your assumptions, draw a sketch of the problem and provide a detailed solution. Question 4: (70 Marks) To recover some of the waste heat in the exhaust of a gas turbine, a heat exchanger with unmixed fluids is used. Hot exhaust gases, at Thi-425°C, flow through tubes, and the cold intake air flows across these tubes at Tci= 25°C, and Tco-210°C, The heat exchanger is designed with mass flow rates m-c 10 kg/s, heat transfer coefficients...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat...

    please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases, hav- ing thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C, respectively. If the overall heat transfer coefficient is 200 W/m2.K, estimate the required surface area. 11.33 Consider the fluid conditions and overall heat transfer coefficient of Problem 11.32 for a concentric tube heat...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT