Question

Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has a heat capacity rate of 2310 W/K and in

0 0
Add a comment Improve this question Transcribed image text
Answer #1


Given ( ) A = 10 m2 heat capacity cpc = 2310 w/k Thi Tci= 25°c, Tco= 150c Tho Tco ITC Cph = 2000 Wik Thi = 325°c cpes Cico - e correction factor RE To-Tz 25 - 150 -0.865 tz- ti 180.625 - 325 ta-ti 180:625 - 325 = 0.48 Ti-ti 25 - 325 Correction factor

Add a comment
Know the answer?
Add Answer to:
Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, ...

    4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, entering at 20°C at a rate of 4 kg/s, using hot air, entering at 127oC at a rate of 10 kg/s. The Overall Heat Transfer Coefficient for the Heat exchanger is 275 W/m'K. Assuming both fluids are unmixed, determine; (i) The Heat Capacity rates for both the air and the water (ii) The heat transfer surface area. ii) The exit temperature of the water...

  • 10-58) An air preheater for a power plant consists of a cross-flow heat exchanger with hot...

    10-58) An air preheater for a power plant consists of a cross-flow heat exchanger with hot exhaust gases used to heat incoming air at I atm and 300 K. The gases enter at 375°C with a flow rate of 5 kg/s. The airflow rate is 5.0 kg/s, and the heat exchanger has A = 110 m2 and U = 50 W/m2 oC. Calculate the heat-transfer rate and exit temperatures for two cases, both fluids unmixed and one fluid mixed. Assume...

  • QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economize...

    QUESTION 4 (25 marks) Water (Cr 4.208 kJ/kg.K) at flow rate of 5.11 kg/s s heated from 78°C to 98°C in an economizer inside a boiler. The boiler is a cross flow heat exchanger with single pass, shell fluid mixed and other fluid unmixed. The average water velocity in the 1.5 cm diameter (D) tube is 1.27 m/s. On the shell side, hot air (C,-1.0341 kJ/kgK) was used as the heating fluid with 7.3 kg/s of it entering the exchanger...

  • 11.20 Heat exchanger of counter flow arrangement with temperatures at inlet of hot and cold fluids...

    11.20 Heat exchanger of counter flow arrangement with temperatures at inlet of hot and cold fluids are (200°C) and (60°C) gave outlet temperature of (110°C) for both sides as the surfaces were clean. After long time of use for same the inlet temperatures and flow rate, the hot fluid outlet was (130°C). Find the change in the overall heat transfer coefficient and the heat transfer values by percentage. Ans.: -37.4%, -22.2% 11.21 A liquid with a specific heat of (3200J/kg....

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min...

    A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min from a body temperature of 37°C to 25°C in order to induce body hypothermia, which reduces metabolic and oxygen requirements. The coolant is ice water at 0°C, and its flow rate is adjusted to provide an outlet temperature of 13°C. The heat exchanger operates with the blood flow unmixed and the water flow mixed, and the overall heat transfer coefficient is 750 W/m2.K. The...

  • please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat...

    please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases, hav- ing thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C, respectively. If the overall heat transfer coefficient is 200 W/m2.K, estimate the required surface area. 11.33 Consider the fluid conditions and overall heat transfer coefficient of Problem 11.32 for a concentric tube heat...

  • A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K...

    A counter-flow heat exchanger is stated to have an overall heat transfer coefficient of 284 W/m2.K when operating at design and clean conditions. Hot fluid enters the tube side at 101°C and exits at 71°C, while cold fluid enters the shell side at 27°C and exits at 42°C. After a period of use, built-up scale in the heat exchanger gives a fouling factor of 0.0004 m2 K/W. The surface area is 93 m². Assume both hot and cold fluids have...

  • Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger...

    Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger is water and is flowing at 1 m/min for both cold and hot pipes. The hot water temperature at the tube inlet is 90°C and the temperature at the tube outlet is 60°C. The cold water temperature at the tube inlet is 50°C and the temperature at the tube outlet is 80°C. Assume the density and the specific heat of water are 988.1 kg/m3...

  • Consider a very long, concentric tube heat exchanger having hot and cold water inlet temperatures of...

    Consider a very long, concentric tube heat exchanger having hot and cold water inlet temperatures of 85 and 15°C. The flow rate of the hot water is twice that of the cold water. Assuming equivalent hot and cold water specific heats, determine the hot water outlet temperature for the following modes of operation: (a) counterflow and (b) parallel flow. (a) Determine the hot water outlet temperature for counterflow operation, in °C. Thy0 = | i °C (b) Determine the hot...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT