Question

Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger is water and is flowing at 1 m/min for both cold and hot pipes. The hot water temperature at the tube inlet is 90°C and the temperature at the tube outlet is 60°C. The cold water temperature at the tube inlet is 50°C and the temperature at the tube outlet is 80°C. Assume the density and the specific heat of water are 988.1 kg/m3 and 4.182 kJ/(kg-K), respectively. [8 pts] 80°C 60°C 90°C Counterflow 50°C

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Determine the effectiveness of the concentric tube heat exchanger. The working fluid through the heat exchanger...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a very long, concentric tube heat exchanger having hot and cold water inlet temperatures of...

    Consider a very long, concentric tube heat exchanger having hot and cold water inlet temperatures of 85 and 15°C. The flow rate of the hot water is twice that of the cold water. Assuming equivalent hot and cold water specific heats, determine the hot water outlet temperature for the following modes of operation: (a) counterflow and (b) parallel flow. (a) Determine the hot water outlet temperature for counterflow operation, in °C. Thy0 = | i °C (b) Determine the hot...

  • A concentric tube heat exchanger of length L = 2 m is used to thermally process...

    A concentric tube heat exchanger of length L = 2 m is used to thermally process a pharmaceutical product flowing at a mean velocity of u_m,c = 0.1 m/s with an inlet temperature of T_c,i = 20 degree C. The inner tube of diameter D_i = 10 mm is thin walled, and the exterior of the outer tube (D_0 = 20 mm) is well insulated. Water flows in the annular region between the tubes at a mean velocity of u_m,h...

  • A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of...

    A concentric tube heat exchanger for cooling lubricating oil consists of a thin-walled inner tube of 25 mm diameter carrying water and an outer tube of 45 mm diameter carrying the oil. The exchanger operates in countercurrent flow with an overall heat transfer coefficient of 55 W/m2 K and the tabulated average properties given below. Mass flow rates of oil and water are both 0.1 kg/s, oil enters the exchanger at 100°C, and water enters the exchanger at 30°C. (a)...

  • Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to...

    Problem X3-5, Heat Transfer, Spring 2018 A single-pass, double-tube counterflow heat exchanger will be used to heat a 0.14 kg/s stream of water nowing in the 12-mm diameter inside tube. The water in the inside tube enters the heat exchanger at 25 C. The water will be heated with a 0.12 kg/s m of hot water flowing in the annulus between the inside and outside tube that enters the heat exchanger at 80°C. UP the hot and cold streams, and...

  • A hot fluid of specific heat 4100 J/kg K flows through a parallel flow heat exchanger...

    A hot fluid of specific heat 4100 J/kg K flows through a parallel flow heat exchanger at the rate of 3.5 kg/min with an inlet temp. of 105C. A cold fluid of specific heat 2350 J/kg K flows in at a rate of 9 kg/min and with inlet temperature 25C. Make calculations for maximum possible effectiveness if the fluid flow conforms to parallel * .flow arrangement 0.596 0.458 .321 0.825 O

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • at Your objective in this problem is to design a "simple" annular flow heat exchanger (see...

    at Your objective in this problem is to design a "simple" annular flow heat exchanger (see the "simple" description the beginning of this HW). A heat exchanger of this kind can easily be built in your garage with two different size pper pipes along with some solder. Assume both fluids are water with the cold fluid flowing in the outer tube. The pipe diameters are based in Type L copper tube dimensions: outside diameter 1/2 -inch nominal tube is 0.625...

  • Twenty [kw] of heat is to be removed from 375 [k] water flowing at 0.15 [kg/s] into the inner pipe of concentric tube heat exchanger. Cooling water enters the annulus at 290 [k] and leaves at 320...

    Twenty [kw] of heat is to be removed from 375 [k] water flowing at 0.15 [kg/s] into the inner pipe of concentric tube heat exchanger. Cooling water enters the annulus at 290 [k] and leaves at 320 [k] with a flow in the opposite direction of the inner flow. The diameter of the thin- walled inner pipe is 2.5 [cm] a) b) c) Calculate the exit temperature of the hot fluid and the mass flow rate of the cold fluid...

  • A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...

    A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40°C to heat fresh water entering at 18°C. The mass flow rate of the waste water is 4 kg/s which is the same as that of the fresh water. Using the data given, calculate: (i) the optimum rate of energy recovery; the required heat transfer area; (iii) the temperature of the fresh water at exit. Shell fluid inlet...

  • Question 5 The following data is given for counter flow in concentric tube heat exchanger, mean...

    Question 5 The following data is given for counter flow in concentric tube heat exchanger, mean heat transfer area = 0.02 m2 Test No Flow rate hot Flow rate Tin hotTout hot|Tin cold Tout cold (L/min) cold (L/min) (THI) (TH2) (TCI) (TC2) 13 1 60 56 30 42 a) Calculate the heat transfer rate in kW. b) The overall heat transfer coefficient U. c) The mean temperature efficiency of the two circuits (ń).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT