Question

A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min from a body temperature
Step 2 What is the water volumetric flow rate, in L/min? Vici L/min Save for Later Attempts: 0 of 3 used Submit Answer Step 3
Step 4 What is the heat exchanger effectiveness? Save for Later Attempts: 0 of 3 used Submit Answer Step 5 What is the number
Step 6 What is the heat exchanger area, in m?? A= i m2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

P= 1050 kg / m3 Ati Thi Tc2=37-13=24°C solution blood: inlet temperature of blead (Thi) =374, 0) = 3740 kg kg-K The =250C volSteps Capacity ratio (o = Comin - (Ce) min 60 Cmax (mp) max. for bleed: frio) = PVC = 1030X UY1034 3740=2618 W)k for water: 6

Add a comment
Know the answer?
Add Answer to:
A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, ...

    4. A Cross-Flow Air-to-Water Heat Exchanger with an effectiveness of 0.58 is used to heat water, entering at 20°C at a rate of 4 kg/s, using hot air, entering at 127oC at a rate of 10 kg/s. The Overall Heat Transfer Coefficient for the Heat exchanger is 275 W/m'K. Assuming both fluids are unmixed, determine; (i) The Heat Capacity rates for both the air and the water (ii) The heat transfer surface area. ii) The exit temperature of the water...

  • An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water,...

    An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.055 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 180 W/m2.K, what is the required heat transfer surface area, in m?? Assume that TC,0 = 320K when evaluating the properties of...

  • Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and...

    Hot water flows thorough a parallel flow heat exchanger at a rate of 10 kg/min and is cooled by a cold water stream of flow rate 25 kg/min. The inlet temperatures of hot and cold water streams are 70 oC and 25 oC, respectively. The outlet temperature of the hot water is expected to be 50 oC. The individual convective heat transfer coefficient on both sides of the heat transfer area is 600 W/m2 .K. Take the specific heat for...

  • An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water,...

    An automobile radiator may be viewed as a cross-flow heat exchanger with both fluids unmixed. Water, which has a flow rate of 0.045 kg/s, enters the radiator at 400 K and is to leave at 330 K. The water is cooled by air that enters at 0.75 kg/s and 300 K. If the overall heat transfer coefficient is 220 W/m2.K, what is the required heat transfer surface area, in mº? Assume that T =320 K when evaluating the properties of...

  • please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat...

    please do 11.33 11.32 A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases, hav- ing thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C, respectively. If the overall heat transfer coefficient is 200 W/m2.K, estimate the required surface area. 11.33 Consider the fluid conditions and overall heat transfer coefficient of Problem 11.32 for a concentric tube heat...

  • 10-58) An air preheater for a power plant consists of a cross-flow heat exchanger with hot...

    10-58) An air preheater for a power plant consists of a cross-flow heat exchanger with hot exhaust gases used to heat incoming air at I atm and 300 K. The gases enter at 375°C with a flow rate of 5 kg/s. The airflow rate is 5.0 kg/s, and the heat exchanger has A = 110 m2 and U = 50 W/m2 oC. Calculate the heat-transfer rate and exit temperatures for two cases, both fluids unmixed and one fluid mixed. Assume...

  • Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has...

    Consider a cross-flow heat exchanger with a surface area of 10 m². The cold fluid has a heat capacity rate of 2310 W/K and inlet and outlet temperatures of 25°C and 150°C respectively. The hot fluid has a heat capacity rate of 2000 W/K and an inlet temperature of 325°C. If the cold fluid can be considered mixed and the hot fluid unmixed, find the overall heat transfer coefficient, u, in W/m2.K, and the outlet temperature, in °C, of the...

  • The heat exchanger in a heat lung machine is constructed so that blood flows through an...

    The heat exchanger in a heat lung machine is constructed so that blood flows through an array of tubes controlled temperature water circulated through an outer exterior shell. e heat exchanger in a heat lung machine is constructed so that blood flows through an array of tubes with controlled temperature water circulated through an outer exterior shell. Although the temperature of the blood varies as it passed through the heat exchanger, during the cool down cycle when a patient is...

  • Question 1- Exhaust gases from a power plant are used to preheat air in a cross-flow...

    Question 1- Exhaust gases from a power plant are used to preheat air in a cross-flow heat exchanger. The exhaust gases enter the heat exchanger at 450°C and leave at 200°C. The air enters the heat exchanger at 70°C, leaves at 250°C, and has a mass flow rate of 10 kg/s. Assume the properties of the exhaust gases can be approximated by those of air. The overall heat transfer coefficient of the heat exchanger is 154 W/m2 K. Calculate the...

  • (b) Exhaust gases flowing through a tubular heat exchanger at the rate of 0.3 kg/s are cooled from 400 to 120°C by w...

    (b) Exhaust gases flowing through a tubular heat exchanger at the rate of 0.3 kg/s are cooled from 400 to 120°C by water initially at 10°C. The specific heat capacity of the exhaust gases and water may be taken as 1.13 and 4.19 kJ/kg°C, respectively, and the overall heat transfer coefficient from gases to water is 140 W/m2°C. Calculate the surface area required when the water flow rate is 0.4 kg/s for (6 marks) (4 marks) (i) (ii) Parallel flow...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT