Question
Answers are down below please attempt them and prove it . Iwill be sure to give you a good rating. Thanks brother

3. Which of the following velocity components represent a possible three-dimensional incompressible flow field? (a) 11 = x +
0 0
Add a comment Improve this question Transcribed image text
Answer #1

s 3. Three dimensienol3n compressible flov 2. 2. s ax ラ1-1+0 =0 |gr. compressible so d 2 2 ラㅇ 303n compre ssibie + 2 x 2) a dfor x-compo nen velo ad ラDu g thenStream funchov.寸 fron) (40) -2x 2 2 2

Add a comment
Know the answer?
Add Answer to:
Answers are down below please attempt them and prove it . Iwill be sure to give...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Given the velocity field V = 101 +(x² + y2); - 2xy k [m/s] a) b)...

    Given the velocity field V = 101 +(x² + y2); - 2xy k [m/s] a) b) c) Is the flow steady or unsteady? Is this motion kinematically possible for an incompressible fluid? Do you think that velocity field can represent a potential flow at specific positions of(x,y)? What is the acceleration of a particle at position (x, y, z) = (3, 1, 0) m? d)

  • 11) (6 points) Given the velocity field V =101 +(x2 + y2); -2xy [m/s] a) b)...

    11) (6 points) Given the velocity field V =101 +(x2 + y2); -2xy [m/s] a) b) c) Is the flow steady or unsteady? Is this motion kinematically possible for an incompressible fluid? Do you think that velocity field can represent a potential flow at specific positions of (x, y)? What is the acceleration of a particle at position (x, y, z) = (3, 1, 0) m? d)

  • Please show all work Given the velocity field =101 +(x2 + y2); - 2xy K [m/s]...

    Please show all work Given the velocity field =101 +(x2 + y2); - 2xy K [m/s] a) b) c) Is the flow steady or unsteady? Is this motion kinematically possible for an incompressible fluid? Do you think that velocity field can represent a potential flow at specific positions of (x, y)? What is the acceleration of a particle at position (x, y, z) = (3, 1, 0) m? d)

  • Meng334(fluids mechanics) plz solve it fast in 10 mins please Q2: A steady two-dimensional, incompressible flow of a...

    Meng334(fluids mechanics) plz solve it fast in 10 mins please Q2: A steady two-dimensional, incompressible flow of a Newtonian fluid with the velocity field: v = y2-x2 u-2 x y and w 0 (a) Does the flow satisfy conservation of mass. (b) Find the total pressure gradient VP) (c) Show that the pressure field is a smooth function of x and y. Don't compute the pressure. (9x 9y 0) = Q2: A steady two-dimensional, incompressible flow of a Newtonian fluid...

  • Please answer without using previously posted answers. Thanks Let F(x, y) be a two-dimensional vector field. Spose further that there exists a scalar function, o, such that Then, F(x,y) is called a g...

    Please answer without using previously posted answers. Thanks Let F(x, y) be a two-dimensional vector field. Spose further that there exists a scalar function, o, such that Then, F(x,y) is called a gradient field, and φ s called a potential function. Ideal Fluid Flow Let F represent the two-dimensional velocity field of an inviscid fluid that is incompressible, ie. . F-0 (or divergence-free). F can be represented by (1), where ф is called the velocity potential-show that o is harmonic....

  • please let other answer if you cant answer thanks please list assumptions, show work, and explain...

    please let other answer if you cant answer thanks please list assumptions, show work, and explain your reasoning carefully! please don't forget all this thanks 3. Consider incompressible, steady, inviscid flow at vertical velocity v though a porous surface into a row up of height, as shown. Assume that the flow is 2D planar, so neglect any variations or velocity components in the direction IV (a) Find the x-component of velocity, assuming uniform flow at every x location. points) Pind...

  • Please attempt the FULL QUESTION Question 4 For pressure-driven laminar flow between two horizontal infinite parallel...

    Please attempt the FULL QUESTION Question 4 For pressure-driven laminar flow between two horizontal infinite parallel plates separated by a distance 2h, the velocity components are: v = 0 where U is the centreline velocity and the x-axis is located at the centreline. Assume steady, fully developed and incompressible laminar flow. For the problem above, obtain the final form of the energy equation after applying the given assumptions. (10 marks) b) Identify the fluid temperature distribution T(y), for a constant...

  • MIT Marine Hydrodynamics Spring 2005 Problem Set 5B Please solve these for me thanks ! :)...

    MIT Marine Hydrodynamics Spring 2005 Problem Set 5B Please solve these for me thanks ! :) 1. Supplementary Problem 12 2. A fluid jet issues from a long vertical slot and strikes against a vertical flat plate at an angle. The resulting two-dimensional steady flow in a horizontal plane is shown below. The plate is frictionless (a) If the volume flow rate of a vertical section of the jet before it strikes the plate is Q A, where A, is...

  • fluid mechanics just part 3 and 4 show all steps please These are typical questions to...

    fluid mechanics just part 3 and 4 show all steps please These are typical questions to answer when examining difficult velocity and acceleration field questions. A three-dimensional velocity field is given by u = x?v=-3xy, and w = 3x + 2 y. Determine the acceleration vector. (a) Are all three components of the velocity field included in this problem? yes (b) In what dimensions can this velocity change? In other words, what independent variables are given in the velocity field?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT