Question

Water is being ejected at the rate 0.2 mil min from a live hydrant with a diameter of 0.15m at the inlet (flange). The diamet
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given that

the rate 0.2 m^3/min

diameter of 0.15 m

the diameter reduces to 0.02 m

inlet pressure is 200 KPa

assume g=9.8 m/s^2

pwater=980 kg/m^3

patm=101.32 KPa

Answen Tom iz < a - - 0,= 0.157 12 -0.02m Pi + 200 spa 1 0-0.2mimin (9) Aiv (022) = n/y (0.155v, TV, 0.18863915 a A2 V2 e 2)f :3502.02N Parault=fR = f (1/2) I shox 20-20SE Wins9.292 •

Add a comment
Know the answer?
Add Answer to:
Water is being ejected at the rate 0.2 mil min from a live hydrant with a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q2 Water flows at a rate of 0.08 m''min through a flanged tap with a partially closed gate valve ...

    Q2 Water flows at a rate of 0.08 m''min through a flanged tap with a partially closed gate valve spigot (Fig. Q2). The inner diameter of the pipe at the inlet and outlet is 2 cm and 1.5 cm respectively, and the gauge pressure of the water at inlet is measured to be 90 kPa. The pressure at outlet from the tap is atmospheric. The total mass of the tap assembly plus the water within it is 5.8 kg. (a)...

  • Problem 1. Water flows from a large tank through a smooth pipe of length 80 m....

    Problem 1. Water flows from a large tank through a smooth pipe of length 80 m. Both the tank free surface and jet exit are exposed to the atmosphere. Take the density of water p = 1000 kg/m3, dynamic viscosity of water u = 0.001 kg/m.s, atmospheric pressure = 100 kPa, and gravity = 9.8 m/s2. Calculate the volumetric flow rate through the pipe. Neglect entrance losses to the pipe. Hint: Consider the inlet and outlet sections of the pipe...

  • Problem 1. Water flows from a large tank through a smooth pipe of length 80 m....

    Problem 1. Water flows from a large tank through a smooth pipe of length 80 m. Both the tank free surface and jet exit are exposed to the atmosphere. Take the density of water p = 1000 kg/m3, dynamic viscosity of water j = 0.001 kg/m.s, atmospheric pressure = 100 kPa, and gravity = 9.8 m/s2. Calculate the volumetric flow rate through the pipe. Neglect entrance losses to the pipe. Hint: Consider the inlet and outlet sections of the pipe...

  • A centrifugal pump is pumping water at a rate of 35.55 gal/min. The pressures at the...

    A centrifugal pump is pumping water at a rate of 35.55 gal/min. The pressures at the inlet, and outlet of the pumps are -2.26 psig and 7.715 psig respectively. The outlet pipe is placed 10 inches higher than the inlet pipe. The inlet and outlet diameters of the pipe are 1.85 in and 1.6 in respectively and the torque produced by the pump rotating at 1593 rpm is 3.172 ft.Ibf. Calculate the following in SI units: a) Total head b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT