Question

2) Consider an infinitely long circular hollow cylinder of radius a, carrying a surface current density/.-Id. Using Amperes

0 0
Add a comment Improve this question Transcribed image text
Answer #1

iven that, badia 5 a. o Fes outsidethe yndes, magnehe field No feld nside a Cylinder Chollow NoL 50 these foae, В.0 aQ Solze&

Add a comment
Know the answer?
Add Answer to:
2) Consider an infinitely long circular hollow cylinder of radius a, carrying a surface current density/.-Id....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. A long solenoid carrying a time-dependent current I(t) is wound on a hollow cylinder whose axis of symmetry is the z...

    2. A long solenoid carrying a time-dependent current I(t) is wound on a hollow cylinder whose axis of symmetry is the z-axis. The solenoid's radius is a, and it has n turns per metre. (a) * Write down the magnetic intensity H(ที่ t) and magnetic field B(r,t) everywhere. What is the energy density in the magnetic field inside the solenoid? (b Find the electric field E(F,t) everywhere using Faraday's law in integral form. (c) * Find the magnetic vector potential...

  • Question 3: A long hollow cylinder with radius R carries a time-dependent surface current density K(t)...

    Question 3: A long hollow cylinder with radius R carries a time-dependent surface current density K(t) = Kosin(wt) $ (see figure below). The current K(t) varies slowly enough that we are still in the quasistatic approximation. (15 points) KO a) Find the magnetic field B(1), magnitude and direction inside and outside the cylinder. (4 points) b) Find the induced electric field E(t), magnitude and direction, inside and outside the cylinder (8 points) c) Find the displacement current Jinside and outside...

  • Electrostatics problem 2. An infinitely long circular cylinder of radius a and dielectric constant E is...

    Electrostatics problem 2. An infinitely long circular cylinder of radius a and dielectric constant E is placed with its axis along the z-axis and is put in an electric field which would have been uniform in the absence of the cylinder, pointing along the x-axis (see figure). Find the total electric field at all points outside and inside the cylinder. Find the bound surface charge density.

  • (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R...

    (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R (we can consider the cylinder as infinitely long). Use Gauss's law to find the electric field produced inside and outside the cylinder. Check that the electric field that you calculate inside and outside the cylinder takes the same value at a distance R from the symmetry axis of the cylinder (on the surface of the cylinder) .

  • Consider an infinitely long, hollow cylinder of radius R with a uniform surface charge density σ....

    Consider an infinitely long, hollow cylinder of radius R with a uniform surface charge density σ. 1. Find the electric field at distance r from the axis, where r < R. (Use any variable or symbol stated above along with the following as necessary: ε0.) 2. What is it for r > R? E(r>R) = ? Sketch E as a function of r, with r going from 0 to 3R. Make sure to label your axes and include scales (i.e.,...

  • Consider an infinitely long straight cylinder of radius R and uniform positive charge density ρ. (a)...

    Consider an infinitely long straight cylinder of radius R and uniform positive charge density ρ. (a) Find the field inside the cylinder a distance r < R from the center. (b) Find the field outside the cylinder a distance r > R from the center. (c) Sketch a plot of E vs r over the range 0 ≤ r ≤ 2R.

  • A hollow, circular cylindrical conductor in freespace of infinite length. The inner and outer radius are...

    A hollow, circular cylindrical conductor in freespace of infinite length. The inner and outer radius are b and c respectively, from the center z axis. It carries a current I in z direction. (a) Find the vector current density J. (b) Use Ampere's Law to find the magnetic field B and H outside the conductor(r>c). (c) Find B inside the hollow interior(r<b). (d) Find B in the conductor(b<r<c).

  • Problem 4, 30 marks The infinitely long conducting cylinder of radius R carries the volume current...

    Problem 4, 30 marks The infinitely long conducting cylinder of radius R carries the volume current density directed along its axis whose absolute value is a cubic function of the distance from the center of the cylinder r, j(r)-br3, where b is a known constant. a. Find the magnitude and direction of the magnetic field B forr>R. b. Find the magnitude and direction of the magnetic field B for r<R. c. Imagine that the conductor has magnetic permeability H (5...

  • 2. An infinitely long wire with linear charge density - is centered inside an in- finitely...

    2. An infinitely long wire with linear charge density - is centered inside an in- finitely long cylinder with surface charge density o and radius a, oriented along the z-axis. (a) Use Gauss's Law to determine the electric field between the wire and cylinder. (b) What must o be, such that the electric field is zero outside the cylinder? (c) An external magnetic field, Bert = Bert 2, is now applied. What is the total angular momentum per unit length...

  • Problem 4 (20 points): A long, solid conducting cylinder of radius R has a current density within...

    Problem 4 (20 points): A long, solid conducting cylinder of radius R has a current density within it described by: (r)-C( ) for r< R where C is a constant to be determined. The total current running through the whole cylinder is I. a) Calculate an expression for the constant C, given that the total current is I. (Hint: the current density is not uniform.) b) Why can Ampere's law be used here, and what Amperian loop is appropriate? c)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT