Question

) A 2 kg block is attached to a rope. The rope is wound around a...

) A 2 kg block is attached to a rope. The rope is wound around a pulley which has a radius of 0.2 m. You do not know the mass of the pulley, or the geometry of the pulley. The block is released from rest, and you notice it has a speed of 3 m/s after falling 1.5 m. a) What is the angular velocity of the pulley when the speed is 3 m/s? b) Use the fact that energy is conserved to find the moment of inertia of the pulley. You must use energy conservation to receive full marks. c) What is the torque applied to the pulley and the tension in the cable?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

88) givene - mass of block т= 2 1 Radius of pulley į = 0.8 m - initial velocity of Bloeklut o creleased) a speed after falli

Add a comment
Know the answer?
Add Answer to:
) A 2 kg block is attached to a rope. The rope is wound around a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Explain how please. A 15 kg block is attached to a rope that is wrapped many...

    Explain how please. A 15 kg block is attached to a rope that is wrapped many times around the rim of a flywheel (pulley) of radius 0.2 meters. When the block is released the rope unspools without slipping. If the acceleration of the block is 3.5, what is the rotational inertia of the flywheel (in kg·m2)?

  • Problem #2 A 4 kg block and a 6 kg block are attached to opposite ends...

    Problem #2 A 4 kg block and a 6 kg block are attached to opposite ends of a light rope. The rope hangs over a solid, frictionless pulley that has a radius of 0.50 m and a mass of 4.5 kg. The pulley's moment of inertia is I ==MR. 2 Find: (a) the magnitude of the tension (in N) of the rope on the end with the lighter block; (b) the magnitude of the tension (in N) of the rope...

  • The! A 4 kg block and a 6 kg block are attached to opposite ends of...

    The! A 4 kg block and a 6 kg block are attached to opposite ends of a light rope. rope hangs over a solid, frictionless pulley that has a radius of 0.50 m and a mass of 4.5 kg. The pulley's moment of inertia is 1 = - MR. 2 Find: (a) the magnitude of the tension (in N) of the rope on the end with the lighter block; (b) the magnitude of the tension (in N) of the rope...

  • A 2.85 kg block is attached to a rope and wrapped around a disc- shaped pulley...

    A 2.85 kg block is attached to a rope and wrapped around a disc- shaped pulley of radius 0.121 m and mass 0.742 kg. If the block is allowed to fall, (a) What is its linear acceleration? (b) What is the angular acceleration of the pulley? (c) How far does the mass drop in 1.50 s?

  • In the figure below, a rope is wound around a horizontal disk (Ma 3.10 kg and...

    In the figure below, a rope is wound around a horizontal disk (Ma 3.10 kg and Ra 17.0 cm). passed across a pulley (Ic 50.0 kg cm2 and Re 8.00 cm), and connected to a hanging 4.00 kg mass. Initially, the mass is held in place, and the system is at rest. The mass is then released and descends in response to the force of gravity. The rope does not slip on the pulley or the horizontal disk. Both the...

  • A 12.0 kg object is attached to a cord that is wrapped around a wheel of...

    A 12.0 kg object is attached to a cord that is wrapped around a wheel of radius 10.0 cm. The acceleration of the object down the frictionless incline is measured to be 2.00 m/s2. Assuming the axis of the wheel to be frictionless, determine a) the tension in the rope, b) the moment of inertia of the wheel, and c) the angular speed of the wheel 2.00 s after it begins rotating, starting from rest. A 12.0 kg object is...

  • A hanging weight, with a mass of me = 0.350 kg, is attached by a rope...

    A hanging weight, with a mass of me = 0.350 kg, is attached by a rope to a block with mass m2 = 0.820 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R2 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...

  • A box of mass m = 10.0 kg is attached to a rope. The other end...

    A box of mass m = 10.0 kg is attached to a rope. The other end of the rope is wrapped around a pulley with a radius of 15.0 cm. When you release the box, it begins to fall and the rope around the pulley begins to unwind, causing the pulley to rotate. As the box falls, the rope does not slip as it unwinds from the pulley. If the box is traveling at a speed of 2.50 m/s after...

  • A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope...

    A hanging weight, with a mass of m1 = 0.365 kg, is attached by a rope to a block with mass m2 = 0.825 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...

  • Prelab 1: Consider the following system consisting of a falling mass m attached by a thread...

    Prelab 1: Consider the following system consisting of a falling mass m attached by a thread to a pulley of radius r and disk/platter of rotational inertiaI. As the mass falls, the thread unwinds and spins up the platter 17 The system considered above can be used to determine the rotational inertia () of the platter and pulley Sketch the force diagram for the falling mass (m) and write the equation of motion for the mass that involves the tension...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT