Question

Homework 20 question 1. Two moles of an ideal gas are heated at constant pressure from...

Homework 20 question 1. Two moles of an ideal gas are heated at constant pressure from a temperature of 30 ∘C to 104 ∘C.

Calculate the work done by the gas.

1. Determine the maximum possible efficiency for the cycle used in Problem 1 from HW 20, Two moles of an ideal gas are heated at constant pressure from a temperature of 30 ∘C to 104 ∘C. Assuming the same hot and cold temperature (assume there are 2.55 x 1021 molecules of diatomic gas). Compare the actual energy conversion efficiency we calculated for that cycle to the best possible (Carnot) efficiency. 2.Determine the maximum possible efficiency for the cycle used in Problem

2 from HW 20, assuming the same hot and cold temperature (assume there are 5.04 x 1022 molecules of diatomic gas). Compare the actual energy conversion efficiency we calculated for that cycleto the best possible (Carnot) efficiency.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Co 1230, 472. As boo ldl.nes

Add a comment
Know the answer?
Add Answer to:
Homework 20 question 1. Two moles of an ideal gas are heated at constant pressure from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two moles of an ideal gas are heated at constant pressure from T = 27°C to...

    Two moles of an ideal gas are heated at constant pressure from T = 27°C to T = 107°C. a) Draw a pV-diagram for this process (just schematically). b) Calculate the work done by the gas. c) If the volume changed by 500 cm’ what was the pressure during the process?

  • 102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It...

    102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It is (1) heated at constant pressure to 655 K, (2) then allowed to cool at constant volume until its temperature returns to its initial value, (3) then compressed isothermally to its initial state. Find: a. the net energy transferred as heat to the gas (excluding the energy transferred as heat out of the gas). b. the net work done by the gas for the...

  • A piston contains 600 moles of an ideal monatomic gas that initally has a pressure of...

    A piston contains 600 moles of an ideal monatomic gas that initally has a pressure of 2.35 x 10 Pa and a volume of 1.8 m5. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir 1. The pressure of the gas is increased to 5.35 x 105 Pa while maintaining a constant volume. 2. The volume of...

  • Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and...

    Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and 127C, starting at pa =12.0x105 Pa at point a in the pV-diagram for the Carnot cycle. The volume doubles during the isothermal expansion step a to b. (a) Find the pressure and volume at points a, b, c and d. (b) Find Q, W and dU for each step and for the entire cycle. (c) Find the efficiency directly from the results of part...

  • Suppose that 292 moles of a monatomic ideal gas is initially contained in a piston with...

    Suppose that 292 moles of a monatomic ideal gas is initially contained in a piston with a volume of 1.34 m3 at a temperature of 588 K. The piston is connected to a hot reservoir with a temperature of 1385 K and a cold reservoir with a temperature of 588 K. The gas undergoes a quasi-static Stirling cycle with the following steps: The temperature of the gas is increased to 1385 K while maintaining a constant volume. The volume of...

  • Rectangular PV Cycle 1 2 3 4 A piston contains 600 moles of an ideal monatomic...

    Rectangular PV Cycle 1 2 3 4 A piston contains 600 moles of an ideal monatomic gas that initally has a pressure of 2.31 x 10 Pa and a volume of 3.8 m'. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.31 x 109 Pa while maintaining...

  • A piston contains 580 moles of an ideal monatomic gas that initally has a pressure of...

    A piston contains 580 moles of an ideal monatomic gas that initally has a pressure of 1.06 x 105 Pa and a volume of 1.3 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 4.06 x 105 Pa while maintaining a constant volume. The volume of the gas...

  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

  • For a Carnot engine with 10 moles of ideal gas (Cv = 1.5 nR) and operating...

    For a Carnot engine with 10 moles of ideal gas (Cv = 1.5 nR) and operating between a hot reservoir of 500 K and a cold reservoir of 300 K, a) What would be the heat exchanges (q1) and entropy change (∆S1) for step 1, where the gas reversibly and isothermally expands to double its volume (V2 = 2 V1) at 500 K? b) What would be the heat exchanges (q3) and entropy change (∆S3) for step 3, where the...

  • For a Carnot engine with 10 moles of ideal gas (Cv= 1.5 nR) and operatingbetween a...

    For a Carnot engine with 10 moles of ideal gas (Cv= 1.5 nR) and operatingbetween a hot reservoir of 500 K and a cold reservoir of 300 K,a. (6 Points) What would be the heat exchanges (q1) and entropy change (∆S1) for step 1, where thegas reversibly and isothermally expands to double its volume (V2= 2 V1) at 500 K?b. (6 Points) What would be the heat exchanges (q3) and entropy change (∆S3) for step 3, where thegas is reversibly...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT