Question

A crane of mass m1 = 3 225 kg supports a load of mass m2 =...

A crane of mass m1 = 3 225 kg supports a load of mass m2 = 12 100 kg as shown in the figure below. The crane is pivoted with a frictionless pin at A and rests against a smooth support at B.

(a) Find the reaction forces at point A.

horizontal component: Magnitude/Direction

vertical component: Magnitude/Direction

(b) Find the reaction forces at point B.

horizontal component: Magnitude/Direction

vertical component: Magnitude/Direction

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A crane of mass m1 = 3 225 kg supports a load of mass m2 =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A load with a mass of 10000 kg is hung on the end of the...

    4. A load with a mass of 10000 kg is hung on the end of the crane as shown in the figure below. The crane is pivoted at point A and leans against a smooth support at point B The mass of the crane is 4000 kg. A com 1.3 m В 2.4 m 7 m (a) Draw a force diagram for the crane. [10 marks] (b) Calculate the reaction force at point A and point B. [10 marks]

  • A mass m2 = 15.0 kg is connected by a light cord to a mass m1...

    A mass m2 = 15.0 kg is connected by a light cord to a mass m1 = 15.0 kg, which slides on a smooth horizontal surface. The pulley, of mass M = 1.00 kg, rotates about a frictionless axle and has a radius R = 0.200 m and a moment of inertia I = 0.0900 kg-m2 . The cord does not slip on the pulley. a) What is the magnitude of the acceleration of m1? b) What is the tension...

  • An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is...

    An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 11.7 kg, shown in the figure. as (a) Find the magnitude of the acceleration of each object m/s2 a1= m/s2 a2 (b) Find the tension in the cable N

  • An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is...

    An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 12.0 kg, as shown in the figure. (a) Find the magnitude of the acceleration of each object. a1 = 12 m/s2 a2 = m/s2 (b) Find the tension in the cable.

  • A mass m1 = 5.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.8 kg that hangs freely.

    A mass m1 = 5.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.8 kg that hangs freely.1) What is the magnitude of the acceleration of block 1?2) What is the tension in the string?3)Now the table is tilted at an angle of ? = 69.0° with respect to the vertical. Find the magnitude of the new acceleration of block 1.4) At what “critical” angle will the...

  • Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light...

    Mass m1 = 5.80 kg is connected to mass m2 = 3.50 kg by a light string that passes over a frictionless pulley. The pulley has a moment of inertia of 0.490 kg · m2 and a radius of 0.280 m. Mass m2 sits on a frictionless horizontal surface. The string does not slip while in motion on the pulley. Find the tension force T1 on mass m1 in N

  • A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a...

    A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.7 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string? 23.4 N Now the table is tilted at an angle of θ = 76° with respect to the vertical. Find the magnitude of the new acceleration of block 1. 2...

  • 2. The shelf supports the electric motor which has a mass of 15 kg and mass...

    2. The shelf supports the electric motor which has a mass of 15 kg and mass center at Gm. The platform upon which it rests has a mass of 4 kg and mass center at Gp. Assuming that a single bolt B holds the shelf up and the bracket bears against the smooth wall at A, determine this normal force at A and the horizontal and vertical components of reaction of the bolt on the bracket. 200 mm 150 mm...

  • Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.65 kg is released from A

    Consider a frictionless track as shown in the figure below. A block of mass  m1 = 5.65 kg is released from  A. It makes a head-on elastic collision at  B with a block of mass  m2 = 20.0 kg  that is initially at rest. Calculate the maximum height to which m1 rises after the collision.Two masses are shown on a frictionless wooden track. The left part of the track curves downward from left to right, starting from an almost-vertical slope and then decreasing in...

  • An object with mass m1 = 5.0 kg rests on a frictionless horizontal table and is...

    An object with mass m1 = 5.0 kg rests on a frictionless horizontal table and is connected to a cable that passes over a frictionless pulley and is then fastened to a hanging object with mass m2 = 10.0 kg. (a) Draw the free body diagrams for both masses. (b) Determine the acceleration of m2 as it falls down. (c) Find the distance that m2 falls in the first two second after the objects are release from rest.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT