Question

LUDOLULU U C 60 CL CDU. Q.3) ( Adiabatic compression ) Calculate the temperature after adiabatic compression of a gas to 10.0
0 1
Add a comment Improve this question Transcribed image text
Answer #1

For an adiabatic process we have: PV = PzV2 Remember that: V- NR7 Then: ᏢnᎡᎢᏤ Ꮲ2nRTY PP P Then: P1-YI = p2=YT Solving for T

Add a comment
Know the answer?
Add Answer to:
LUDOLULU U C 60 CL CDU. Q.3) ( Adiabatic compression ) Calculate the temperature after adiabatic...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.4 (i) In class, we showed that for an adiabatic compression of an ideal gas, pVY...

    2.4 (i) In class, we showed that for an adiabatic compression of an ideal gas, pVY =constant, where y = Cp/Cy is the adiabatic index. Find an analogous expression for p and T. (ii) At CUHK, we have several expensive compressors for compressing helium gas. Suppose you (accidentally) use a compressor designed for compressing air to compress helium gas. You intend to compress from 1 atm at 300 K to 5 atm. Calculate the final temperature after the compression and...

  • 4.)Write an expression for the relationship between P and V for the adiabatic compression of air....

    4.)Write an expression for the relationship between P and V for the adiabatic compression of air. 5.)do the results above agree with this expression with 5%? what discrepancies could there be? 6.)Does the syringe return to it's initial volume when the plunger is released? 7.) provide a Pressure-Volume graph of he compression and expansion cycle of the gas. label the adiabatic, isothermal and isovolumetric. Pressure (kPa) Volume (ml) Temperature (°C Temperature (K) initial 40 26.40 299.55 [102.337 [211-818 Maximum pressure...

  • for the irreversible adiabatic heating of an ideal diatomic gas, calculate q, w, delta U, delta...

    for the irreversible adiabatic heating of an ideal diatomic gas, calculate q, w, delta U, delta H, and the final temperature given p1 = 0.5 bar, p2 =3.5 bar, and T1 = 150 K

  • 2) Calculate w for the adiabatic expansion of 2.50 mol of an ideal gas at an...

    2) Calculate w for the adiabatic expansion of 2.50 mol of an ideal gas at an initial pressure of 2.25 bar from an initial temper- ature of 450. K to a final temperature of 300. K. Write an expression for the work done in the isothermal reversible expan- sion of the gas at 300. K from an initial pressure of 2.25 bar. What value of the final pressure would give the same value of w as the first part of...

  • A system consists of 2.320 g of carbon monoxide gas initially at temperature 400.0 K and...

    A system consists of 2.320 g of carbon monoxide gas initially at temperature 400.0 K and pressure 0.6250 bar. Assume the heat capacity of carbon monoxide is constant at the value found for 298.15 K in the data tables of the Appendix (see also Figure 2.8). The system undergoes the following cyclic process: Step a) Reversible isothermal expansion to double the initial volume. Step b) Constant volume extraction of heat from the system (to a temperature and pressure consistent with...

  • One mole of an ideal gas in a closed system undergoes a mechanically reversible adiabatic compression...

    One mole of an ideal gas in a closed system undergoes a mechanically reversible adiabatic compression process and changes from V1= 0.05 m^3 and P1= 1 bar to P2= 12 bar. Calculate Q, W, ∆U, and ∆H of the process. If the process will become irreversible with 50% efficiency, calculate the W, Q, ∆U, and ∆H.

  • For the following processes, calculate the indicated quanti- ties for a system consisting of 1 mol...

    For the following processes, calculate the indicated quanti- ties for a system consisting of 1 mol of N2 gas. Assume ideal gas behavior. a. The gas, initially at 10 bar, is expanded tenfold in volume against a constant external pressure of 1 bar, all at 298 K. Calculate q, w, ?U and ?H for the gas. b. After the expansion in part (a), the volume is fixed, and heat is added until the temperature reaches 373 K. Calculate q, w,...

  • 1 00 mol of a perfect gas initially at 1 00 atm and 298 K with...

    1 00 mol of a perfect gas initially at 1 00 atm and 298 K with Cpm (7/2) R is put through the following cycle () constant-volume heating to twice its initial temperature (u) reversible, adiabatic expansion back to its onginal temperature () reversible, isothermal compression back to 1 00 atm Calculate q, w, AU, and AH for each of the steps ()-(m) above Hints First calculate AU, then q AH easily follows Remember the meaning of an adiabatic process...

  • My questions: What are the volume of c and d? How do you calculate the delta...

    My questions: What are the volume of c and d? How do you calculate the delta S and delta S surroundings of each step? Consider the reversible Carnot cycle shown below. a PA Isothermal expansion Thoil Adiabatic compression Toold Pressure Thot PE Adiabatic expansion Thot cold Po- Isothermal compression Trot Toold Po Toold va Vc Vd Vo Volume The "working substance" (gas inside the piston, in red above) is 3.10 moles of a monatomic ideal gas, with Cvm = 3R/2....

  • A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K...

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K and 1.00 atm is put through the following cycle: (a) Constant volume heating to twice its initial pressure, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate q, w, ΔU, and ΔH for each step and overall (assume the initial temp is 298 K).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT