Question

An electronic device operates in air at an ambient temperature of 22°C with a convection heat transfer coefficient of 85 W m K- To enhance cooling, aluminium 2024-T6 fins of length 40 mm and cross-section 2 mm x 2 mm will be mounted on one surface of the device. The finned surface measures 45 mm x 64 mm and the other surfaces are insulated. The device dissipates 95 W of heat. (i) Calculate the rate of heat transfer through one fin if the device is at 60°C. (b) (ii How many fins should be attached to the device to ensure that its operating temperature is 60°C or less? 13]

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
An electronic device operates in air at an ambient temperature of 22°C with a convection heat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • The solar radiation incident on the outside surface of an aluminum shading device is 1300 W/m2...

    The solar radiation incident on the outside surface of an aluminum shading device is 1300 W/m2 . Aluminum absorbs 10% of the incident solar energy, and dissipates it by convection from the back surface and by combined convection and radiation from the outside surface. The convection heat transfer coefficient is 10 W/m2 ·K for both surfaces, and the ambient/surrounding temperature can be taken 20 °C for both convection and radiation. Assuming that the aluminum shade has a uniform temperature, determine...

  • An array of electronic chips is mounted within a sealed rectangular enclosure, and cooling is implemented...

    An array of electronic chips is mounted within a sealed rectangular enclosure, and cooling is implemented by attaching an aluminum heat sink (k = 180 W/m-K). The base of the heat sink has dimensions of wi = wº = 100 mm, while the 6 fins are of thickness: = 10 mm and pitch S = 18 mm. The fin length is 1; = 50 mm, and the base of the heat sink has a thickness of Ls = 15 mm....

  • The heat that is conducted through a body must frequently be removed by other heat transfer...

    The heat that is conducted through a body must frequently be removed by other heat transfer processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature T. The conductivity of the aluminum fin (k) and coefficient of heat convection of...

  • finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat...

    finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat from a surface whose temperature is 150°C. The temperature of ambient air is 20°C. The thermal conductivity of aluminium is 168 W/m.K. The natural convective coefficient associated with the surrounding air is 35 W/m2.K. The fins are 150 mm long and the heat loss from the tip of the fin may be neglected. (a) Determine the temperature distribution along...

  • G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 7...

    G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 70 mm are attached to the wall with surface temperature o C. The fin is made of material with thermal conductivity of 210 W/mk, and exposed to an ambient air condition of 24 °C and the convection heat transfer coefficient of 190 W/m2k. f 300 1- Plot the temperature variation for the following boundary conditions a- Infinitely long fin b- Adiabatic fin tip c-...

  • (c) Steam flows a pipe of external diameter 30 mm, where the pipe outer surface temperature...

    (c) Steam flows a pipe of external diameter 30 mm, where the pipe outer surface temperature is 130oC. Circular annular fins (k = 180 W·m-1·K-1) of outer diameter 60 mm and thickness 1 mm are fitted tightly to the pipe. Heat is transferred by convection (h=10 W·m-2·K-1) to the surrounding air at 20oC. (i) Determine the efficiency of a single fin. (ii) Determine the heat transfer rate for a single fin. (8 marks) (6 marks) (iii) Determine the effectiveness of...

  • 2. Straight metal fins (k = 100 W/m°C) with rectangular profile protrude from a l m...

    2. Straight metal fins (k = 100 W/m°C) with rectangular profile protrude from a l m high wall. The wall is maintained at 200 °C and exposed to a convection environment at 25°C with h = 20 W/m² °C. The fins have a length (L) of 8 cm and a thickness (1) of 3 mm. The space between two adjacent fins is 2 mm. Calculate the following for per unit depth of wall: (a) the fin efficiency, (8 points) (b)...

  • blem 4 (20 pts) A square chip that is 12.7mm on a side has a maximum allowable chip operating temperature -75°C. To dissipate heat produced in the chip, a 4 x 4 array of copper (k-400 W/m.K) pin fins...

    blem 4 (20 pts) A square chip that is 12.7mm on a side has a maximum allowable chip operating temperature -75°C. To dissipate heat produced in the chip, a 4 x 4 array of copper (k-400 W/m.K) pin fins is proposed to be etallurgically joined to the outer surface of the chip. The convection coefficient is h-250 W/m'K and ambient air mperature isTo-20°C. The pin fin dimeter is D,-1.5mm and length is L,-16mm. Assuming steady-state uniform chip temperature Te-75°C and...

  • Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter...

    Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter of 50 mm and an outer surface temperature of 400°C. The fins are mm thick and 20 mm long. The system is in ambient air at a temperature of 20°C, and the surface convection coefficient is 40 W/ mK. (a) What are the fin efficiency and effectiveness? (b) If there are 125 such fins per meter of tube length, what is the rate of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT