Question

Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter of 50 mm and an outer
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please appreciate the work done by UPVOTING ... Please ... Thaank you .

20mm h = how/mit Too = 20°c - 2 Įt = 4mm Toa 400°c 25mm k= 2217 w/mk | (Amume) L = 0.0rom t о- ооч Now А (Le = Lt 4) Now Profday Date Auer B Now g=NQf+96 5 From ② 4 ④ of Efficiency Eft 70.2253 40X (277X0.027x01004) g annular fins of retangular X (20

Add a comment
Know the answer?
Add Answer to:
Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 8. An circular in of rectangular profile is attached to a circular tube having an outside...

    8. An circular in of rectangular profile is attached to a circular tube having an outside diameter mm and a surface temperature of 250 °C. The finis 1 mm thick and 10 mm long and the temperature and the convection coefficient associated with the adioining fluid are 25 and 2 W/m .K, respectively. The thermal conductivity of the fin material may be assumed to W/m.ºc. ir fins are spaced at 5-mm increments: Determine the increase in heat transfer from the...

  • G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 7...

    G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 70 mm are attached to the wall with surface temperature o C. The fin is made of material with thermal conductivity of 210 W/mk, and exposed to an ambient air condition of 24 °C and the convection heat transfer coefficient of 190 W/m2k. f 300 1- Plot the temperature variation for the following boundary conditions a- Infinitely long fin b- Adiabatic fin tip c-...

  • Please help with a-e. The answers are given. 22) Annular steel fins (k = 56.7 W/m·K)...

    Please help with a-e. The answers are given. 22) Annular steel fins (k = 56.7 W/m·K) are attached to a steel tube that is 30 mm in external diameter. The fins are 2 mm tha and 15 mm long. The tube wall temperature is 350 K and the surrounding fluid temperature is 450 K with a heat-trans coefficient of 75 W/m2, K. There are 200 fins per meter of tube length. Calculate: (a) The fin efficiency (b) The fin surface...

  • finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat...

    finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat from a surface whose temperature is 150°C. The temperature of ambient air is 20°C. The thermal conductivity of aluminium is 168 W/m.K. The natural convective coefficient associated with the surrounding air is 35 W/m2.K. The fins are 150 mm long and the heat loss from the tip of the fin may be neglected. (a) Determine the temperature distribution along...

  • 6. Problem 3 (20 points): A Steam in a heating system flows through tubes whose outer...

    6. Problem 3 (20 points): A Steam in a heating system flows through tubes whose outer diameter is 3 cm and whose walls are maintained at a temperature of 120°C. Circular aluminum alloy fins (k = 180 W/m.) of outer diameter 6 cm and constant thickness t 2 mm are attached to the tube, as shown in the figure below. The space between the fins is 3 mm, and thus there are 200 fins per meter length of the tube....

  • Determine the percentage increase in heat transfer associated with attaching aluminum fins of rectangular profile to...

    Determine the percentage increase in heat transfer associated with attaching aluminum fins of rectangular profile to a plane wall. The fins are 50 mm long, 0.5 mm thick, and are equally spaced at a distance of 10.00 mm (100 fins/m). The convection coefficient associated with the bare wall is 40 W/m².K, while that resulting from attachment of the fins is 30 W/m².K.

  • 2. Straight metal fins (k = 100 W/m°C) with rectangular profile protrude from a l m...

    2. Straight metal fins (k = 100 W/m°C) with rectangular profile protrude from a l m high wall. The wall is maintained at 200 °C and exposed to a convection environment at 25°C with h = 20 W/m² °C. The fins have a length (L) of 8 cm and a thickness (1) of 3 mm. The space between two adjacent fins is 2 mm. Calculate the following for per unit depth of wall: (a) the fin efficiency, (8 points) (b)...

  • a rectangular fin (k= 235w/m*K) is attached to a wall and has a length of 5...

    a rectangular fin (k= 235w/m*K) is attached to a wall and has a length of 5 cm, a width of 10 cm, and a thickness of 5 mm. the surface temperature of the wall is 350 degrees Celcius and the ambient air is 25 degrees celcius. what is the efficiency, the heat transfer rate, and the fin effectiveness? assume an adiabatic fin tip condition and a convection heat transfer coefficient of 154 W/m^2 * K  

  • Thin-walled aluminum tubes of diameter D = 10 mm are used in the condenser of an air conditioner....

    Thin-walled aluminum tubes of diameter D = 10 mm are used in the condenser of an air conditioner. Under normal operating conditions, a convection coefficient of hi = 5000 W/m2 · K is associated with condensation on the inner surface of the tubes, while a coefficient of ho = 100 W/m2 · K is maintained by airflow over the tubes. a. What is the overall heat transfer coefficient if the tubes are unfinned? b. What is the overall heat transfer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT