Question

An existing steam turbine operating on a reheat Rankine cycle in which the first stage turbine has an inlet pressure of 12.5MPa and inlet temperature of 550 degree celcius. The second stage has an inlet temperature of 500 degree celcius. Assuming both turbines and water pump run at 100% isentropic efficiency. The steam leaves the condenser as saturated liquid at 15kPa.

Based on the set up above, the engineer decides to add an open feedwater heater (FWH) to the reheat steam turbine cycle itself. Steam enters low pressure turbine 1 (LT1) at the reheater pressure of 3.40MPa and expands to 0.8 MPa. A fraction of the steam then enters the open feedwater heater (operating at 0.8 MPa), and the mixture leaves the FWH as saturated liquid. All other operating conditions remain the same as before adding up the FWH.

HT LT1 U LT2 LT1 Reheat 6 9 Boiler Open PWH Condenser

1. Draw the T-s diagram for this steam power plant. (1 pts)
2. The fraction of steam extracted to the FWH. (2 pts)
3. The thermal efficiency of the cycle. Compare your calculation with the thermal efficiency in Part A and discuss the difference. (1 pts)
4. The total mass flow rate (kg/h) of steam in the cycle, if a net power output of 150 MW is to be achieved. (1 pts)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An existing steam turbine operating on a reheat Rankine cycle in which the first stage turbine...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure...

    a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure turbine (HPT) at a pressure of 10 MPa and temperature of 550°C. The steam expands through the HPT stage to a pressure of 0.6 MPa. Some of the steam at the end of the expansion process in HPT is extracted for a regeneration process in a closed-type feedwater heater. The steam leaves the heater as a saturated liquid and then is throttled to the...

  • A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at...

    A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at 12.5 MPa and 5508C at a rate of 7.7 kg/s and leaves at 2 MPa. Steam is then reheated at constant pressure to 400 C before it expands in the low-pressure turbine. Steam leaves the condenser as a saturated liquid. The exit of the turbine is saturated at the condenser pressure (a) the condenser pressure, (b) the net power output, and (c) the thermal...

  • P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at...

    P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at 20 MPa, 600°C. Between the high and low-pressure turbines, steam at 1 MPa is extracted and delivered to the closed feedwater heater. Feedwater exits the feedwater heater at 20 MPa and the saturation temperature of the 1-MPa steam; saturated liquid condensate is fed through a steam trap back to the condenser. Steam from the second- stage turbine enters the condenser at 10 kPa, and...

  • A steam plant operates on a reheat Rankine cycle and has a net power output of...

    A steam plant operates on a reheat Rankine cycle and has a net power output of 80MW. Steam enters the high pressure turbine at 10 MPa and 500 °C and the low pressure turbine at 1 MPa and 500 °C. Steam leaves the condenser as a saturated liquid at a pressure of 10kPa. The efficiency of the turbine is 80% and the efficiency of the pump is 95%. Determine the thermal efficiency of the cycle. Rankine Cycle with Reheat

  • Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open...

    Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open one, and reheat. Steam enters the first turbine stage at 12 MPa, 480°C, and expands to 2 MPa. Some steam is extracted at 2 MPa and fed to the closed feedwater heater. The remainder is reheated at 2 MPa to 440°C and then expands through the second-stage turbine to 0.3 MPa, where an additional amount is extracted and fed into the open feedwater heater...

  • Example: Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the...

    Example: Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600 °C and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 percent, determine (a) the pressure at which the steam should be reheated and (b) the thermal efficiency of the cycle. Assume the steam is reheated...

  • Consider an ideal steam regenerative cycle in which steam enters the turbine at 3.0 MPa, 400°C,...

    Consider an ideal steam regenerative cycle in which steam enters the turbine at 3.0 MPa, 400°C, and exhausts to the condenser at 10 kPa. Steam is extracted from the turbine at 0.8 MPa to an open feedwater heater. The feed water leaves the heater as saturated liquid. The appropriate pumps are used for 2 the water leaving the condenser and the feed-water heater. Calculate (a) the thermal efficiency of the cycle, (b) the net work per kilogram of steam, and...

  • Steam power plant using the reheat Rankine cycle

    A steam power plant operates using the reheat Rankine cycle. Steam enters the high pressure turbine at 12.5 MPa and 550ºC at a rate of 7.7 kg/s and leaves at 2MPa. Steam is then reheated at a constant pressure to 450ºC before it expands in the low pressure turbine. The isentropic efficiencies of the turbine and the pumpare 85% and 90%, respectively. Steam leaves the condenser as a saturated liquid. If the moisture content of the steam at the exit...

  • Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an...

    Consider a reheat–regenerative vapor power cycle with two feedwater heaters, a closed feedwater heater and an open feedwater heater. Steam enters the first turbine at 12.0 MPa, 520C and expands to 0.6 MPa. The steam is reheated to 480C before entering the second turbine, where it expands to the condenser pressure of 0.006 MPa. Steam is extracted from the first turbine at 2 MPa and fed to the closed feedwater heater. Feedwater leaves the closed heater at 205C and 8.0...

  • 2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving...

    2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa,600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater. Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater . The condenser pressure in the cycle is 5 kPa. The mass flow rate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT