Question

the sample. UIUJ el trom their theft 50 years after they stole 2. One solution of the following differential equation is y, =

2&3 plz

0 0
Add a comment Improve this question Transcribed image text
Answer #1

of reduction W dy one solution of the fallowing differential equation is y = x5, use the method of order (not a formula) toNow u Now R dx2 + + pok) + 2 =R do (P + 2 dud du We will use expression » to get the reduce bom the given equation &s x ²4-qSo we get from 6 det oft=0 Integrating both sere we get lnt tenx =lne en Eng=C tx=c [lic is Integrating Constant] NOW dy2 = 0Find the Solution of the Initial value problem yu_4ylt 139 = 0,9 Col= 3 ,y(o) = 0 let y (2) = Alma be a solution of Ay +so y(x) 2X ( 36934 BS in 3*) ordithese C

Add a comment
Know the answer?
Add Answer to:
2&3 plz the sample. UIUJ el trom their theft 50 years after they stole 2. One...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider differential equation (x - 1)y" – xy' + y = 0. a). Show that yi...

    Consider differential equation (x - 1)y" – xy' + y = 0. a). Show that yi = el is a solution of this equation. Use the method of reduction of order to find second linearly independent solution y2 of this equation. (2P.) b). Find solution of the initial value problem (1P.) y(1) = 0, y'(1) = 1. c). Find solution of the initial value problem (1P.) y(1) = 0, y'(1) = 0. d). Does your answer in b) and c)...

  • Given a second order linear homogeneous differential equation a2(x)” + a (x2y + a)(x2y = 0...

    Given a second order linear homogeneous differential equation a2(x)” + a (x2y + a)(x2y = 0 we know that a fundamental set for this ODE consists of a pair linearly independent solutions yı, y. But there are times when only one function, call it yi, is available and we would like to find a second linearly independent solution. We can find y2 using the method of reduction of order. First, under the necessary assumption the az(x) + 0 we rewrite...

  • use the method of this section to construct a second, linearly independent solu- tion 1.2.3 Find...

    use the method of this section to construct a second, linearly independent solu- tion 1.2.3 Find the general solution to the second order differential equation Use this hint only after trying first. xy"- xy' + y = 0) y1 = x

  • Please show all work and steps! Would like to learn how! Given a second order linear...

    Please show all work and steps! Would like to learn how! Given a second order linear homogeneous differential equation a2(x)y" + a1(x)y' + 20 (x)y = 0 we know that a fundamental set for this ODE consists of a pair linearly independent solutions Yı, Y2. But there are times when only one function, call it Yı, is available and we would like to find a second linearly independent solution. We can find Y2 using the method of reduction of order....

  • One of the solutions to the following differential equation (1 – 2x – 2y + 2(1+x)y...

    One of the solutions to the following differential equation (1 – 2x – 2y + 2(1+x)y – 2y = 0 is known to be yı (x) = 1 +1 Find the second linearly independent solution y2 (2) using the method of Reduction of Order.

  • (1 point) Given a second order inear homogeneous differential equation az(x) + we know that a...

    (1 point) Given a second order inear homogeneous differential equation az(x) + we know that a fundamental set for this ODE consists of a pair nearly ndependent solutions . linearly independent solution We can find using the method et reduction of (2) + Golly=0 But there are times when only one functional and we would e nd a con First under the necessary assumption the a, (2) we rewrite the equation as * +++ (2) - Plz) - ) Then...

  • HW3.2: Problem 1 Previous Problem Problem List Next Problem (1 point) Given a second order linear...

    HW3.2: Problem 1 Previous Problem Problem List Next Problem (1 point) Given a second order linear homogeneous differential equation a2(x)y" + ai (x)y' + ao (x)y0 we know that a fundamental set for this ODE consists of a pair linearly independent solutions yi, y2. But there are times when only one function, call it y, is available and we would like to find a second linearly independent solution. We can find 2 using the method of reduction of order. First,...

  • 3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a...

    3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a value ofr for which y = et is a solution to the corresponding homogeneous differential equation. (b) Use Reduction of Order to find a second, linearly independent, solution to the correspond- ing homogeneous differential equation. (c) Use Variation of Parameters to find a particular solution to the nonhomogeneous differ- ential equation and then give the general solution to the differential equation.

  • 2. (3+4+4+4 pts) In this problem, we discuss a method of solving SOL equations known as...

    2. (3+4+4+4 pts) In this problem, we discuss a method of solving SOL equations known as Reduction of Order. Given an equation y" +p(a)y' +9(2)y = 0, and assuming yi is a solution, Reduction of Order asks: does there exist a second, linearly-independent solution y2 of the form y2 = u(x)41 for some function u(x)? See Section 3.2, Exercise 36 for reference). We'll now use this to solve the following problem. (a) Consider the SOL differential equation sin(x)y" — 2...

  • Find the solution y of the initial value problem 3"(t) = 2 (3(t). y(1) = 0,...

    Find the solution y of the initial value problem 3"(t) = 2 (3(t). y(1) = 0, y' (1) = 1. +3 g(t) = M Solve the initial value problem g(t) g” (t) + 50g (+)? = 0, y(0) = 1, y'(0) = 7. g(t) = Σ Use the reduction order method to find a second solution ya to the differential equation ty" + 12ty' +28 y = 0. knowing that the function yı(t) = + 4 is solution to that...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT