Question

Question # 2 110 marks t45 MPa For the state of plane stress shown in the figure: a Construct Mohrs circle (4 marks), b- Det
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ay=45 H 6-80MPA b) principal Streses Cay 6-6y (5y- o H) BI,2 2 a+08 24 t +(45)2 2 6 1 6 -20 20 MP Directiony e principes pland) Maaimum Sheaging Stren man 2 28--tauCh6-5 2 + Tay -20-616 2 60.20 HPa Corseyponding nosma stren 5-by Co20, +Tayn 2 t 1 2

Add a comment
Know the answer?
Add Answer to:
Question # 2 110 marks t45 MPa For the state of plane stress shown in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the given state of stress. Take X = 10 MPa and Y = 45 MPa....

    Consider the given state of stress. Take X = 10 MPa and Y = 45 MPa. Determine the principal planes using Mohr's circle. a) The principal planes are at −  ° and  °. Determine the principal stresses using Mohr's circle. b)The minimum principal stress is −  MPa, and the maximum principal stress is  MPa. Determine the orientation of the planes of maximum in-plane shearing stress using Mohr's circle. c) The orientation of the plane of maximum in-plane shearing stress in the first quadrant is  °....

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • I need part b please 40 M 45 MP 50 MPA - For the given state...

    I need part b please 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle...

  • Mohr's Circle: For the state of stress shown below, sketch the plane stress Mohr Circle on...

    Mohr's Circle: For the state of stress shown below, sketch the plane stress Mohr Circle on a graphing paper (to scale and using drawing instruments). Staple it to this coversheet. 10 ksi 20 ksi In the space below sketch the element showing the principal planes and the principal stresses (remember to show the angle the element makes with either the X or the Y axis) In the space below sketch the element showing the maximum in-plane shearing stresses, associated normal...

  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

  • Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the p...

    please help me solve this whole mechanical design problem thanks Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the principal stresses, s, (c) the maximum in plane shearing stress, Tmar and (d) its orientation, p. (e) the normal stress at the plane of maximum shear stress, (1) sketch of the rotated plane element for the principal stresses and the rotated plane element for maximum shear stress similar to figure 1, below...

  • Problem 1 - Mohr's circle for plane stress For the given state of stress,[30 complete following:...

    Problem 1 - Mohr's circle for plane stress For the given state of stress,[30 complete following: pts. 1. Draw Mohr's circle showing the principal stresses (max & min), center points (C) and radius R. (20 pts.] 60 MPa 180 MPa NMP MPa 2. Determine the principal planes (20and ) and the maximum in-plane shear stress (max). What is the corresponding normal stress (O") for this maximum in-plane shear stress? [10 pts.)

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, o, and O2 and their corresponding principal angles, 0p1,0p2 and show all of these on your Mohr's circle construction and a properly oriented stress element c. Calculate the maximum shear stresses, ITmax and their corresponding angles of maximum...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and Txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, 01 and 02 and their corresponding principal angles, 021,092 and show all of these on your Mohr's circle construction and a properly oriented stress element. c. Calculate the maximum shear stresses, ETmax and their corresponding angles of maximum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT