Question

A small block of mass m = 33 g can slide along the frictionless loop-the-loop, with loop radius R = 16 cm. The block is relea

QUESTİON CHANGED : --> How much work does the gravitational force do on the block as the block travels from point P to point Q?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

son m=33 3gm R=16cm, ho SR Jo COOK done by grantectoncel force- mg (hr) - 0.033x9.80x (5R-R) = 0.033X9.80 x 4X0.16 - 0.206976

Add a comment
Know the answer?
Add Answer to:
QUESTİON CHANGED : --> How much work does the gravitational force do on the block as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, a small block of mass m = 0.040 kg can slide along the...

    In the figure, a small block of mass m = 0.040 kg can slide along the frictionless loop-the-loop, with loop radius R = 19 cm. The block is released from rest at point P, at height h = 6R above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to (a) point Q and (b) the top of the loop? If the gravitational potential energy of...

  • In the figure, a small block of mass m = 0.021 kg can slide along the...

    In the figure, a small block of mass m = 0.021 kg can slide along the frictionless loop-the-loop, with loop radius R = 14 cm. The block is released from rest at point P, at height h = 5R above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to (a) point Q and (b) the top of the loop? If the gravitational potential energy of...

  • + -/6 points HRW6 8.P.006. In Fig. 8-28, a small block of mass m 2.0 kg...

    + -/6 points HRW6 8.P.006. In Fig. 8-28, a small block of mass m 2.0 kg can slide along the frictionless loop-the-loop. The block is released from rest at point P, at height h = 10R above the bottom of the loop. Lon Figure 8-28 (a) How much work does the weight of the block do on the block as the block travels from point P to point ? GR (b) How much work does the weight of the block...

  • Part 1) A small block travels up a frictionless incline that is at an angle of...

    Part 1) A small block travels up a frictionless incline that is at an angle of 30.0°above the horizontal. The block has speed 4.26 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down? Part 2) Complete the following exercises. (Assume g = 9.80 m/s2.) (a) A small block is released from rest at...

  • A small block is released from rest at the top of a frictionless incline. The distance...

    A small block is released from rest at the top of a frictionless incline. The distance from the top of the incline to the bottom, measured along the incline, is 3.80 m. The vertical distance from the top of the incline to the bottom is 1.20 m. If g = 9.80 m/s2, what is the acceleration of the block as it slides down the incline?

  • In the figure, a small block of mass m = 0.022 kg can slide along the...

    In the figure, a small block of mass m = 0.022 kg can slide along the frictionless loop-the-loop, with loop radius R = 15 cm. The block is released from rest at point P, at height h = 5R above the bottom of the loop. What are the magnitudes of (a) the horizontal component and (b) the vertical component of the net force acting on the block at point Q? (c) At what height h should the block be released...

  • A block of mass m slides down a frictionless incline. The block is released a height...

    A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of m, g,...

  • Problem 3 A block of mass m slides down a frictionless incline. The block is released...

    Problem 3 A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of...

  • Problem 3 A block of mass m slides down a frictionless incline. The block is released...

    Problem 3 A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of...

  • A small block of mass m slides along the frictionless loop the loop track shown below....

    A small block of mass m slides along the frictionless loop the loop track shown below. If it starts from rest at point A, what is the speed of the block at point B? (v = squareroot (10 g R)) What is the net force acting on the block at point C? (Don't forget the gravitational force. (F = -mg (8i + j) At what height above the bottom should the block be released so that the normal force exerted...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT