Question

In the figure, a small block of mass m = 0.021 kg can slide along the frictionless loop-the-loop, with loop radius R = 14 cm.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ginen m=0.021kg R = 14cm. h=5R a) Point a img4R = 0.02189.8X4 X0.14 = 0.1152485 b) the top of the loop mg 3R = 0.02189:8X3X0.

Add a comment
Know the answer?
Add Answer to:
In the figure, a small block of mass m = 0.021 kg can slide along the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, a small block of mass m = 0.040 kg can slide along the...

    In the figure, a small block of mass m = 0.040 kg can slide along the frictionless loop-the-loop, with loop radius R = 19 cm. The block is released from rest at point P, at height h = 6R above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to (a) point Q and (b) the top of the loop? If the gravitational potential energy of...

  • + -/6 points HRW6 8.P.006. In Fig. 8-28, a small block of mass m 2.0 kg...

    + -/6 points HRW6 8.P.006. In Fig. 8-28, a small block of mass m 2.0 kg can slide along the frictionless loop-the-loop. The block is released from rest at point P, at height h = 10R above the bottom of the loop. Lon Figure 8-28 (a) How much work does the weight of the block do on the block as the block travels from point P to point ? GR (b) How much work does the weight of the block...

  • In the figure, a small block of mass m = 0.022 kg can slide along the...

    In the figure, a small block of mass m = 0.022 kg can slide along the frictionless loop-the-loop, with loop radius R = 15 cm. The block is released from rest at point P, at height h = 5R above the bottom of the loop. What are the magnitudes of (a) the horizontal component and (b) the vertical component of the net force acting on the block at point Q? (c) At what height h should the block be released...

  • QUESTİON CHANGED : --> How much work does the gravitational force do on the block as...

    QUESTİON CHANGED : --> How much work does the gravitational force do on the block as the block travels from point P to point Q? A small block of mass m = 33 g can slide along the frictionless loop-the-loop, with loop radius R = 16 cm. The block is released from rest at point P, at height h = 5.0R above the bottom of the loop. If the gravitational potential energy of the block-Earth system is taken to be...

  • A block with mass m = 1.86 kg is placed against a spring on a frictionless...

    A block with mass m = 1.86 kg is placed against a spring on a frictionless incline with angle θ = 33.9° (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 25 N/cm, is compressed 28.1 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • 1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected...

    1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected over a pulley. The mass of block A is me and the coeffcient of kinetic friction between A and the incline is in Angle of the incline is 6 at constant speed. What is the mass of block B? Express your answer in terms of the variables given. Frictionless, massless pulley B In the figure, a small block of mass m = 0.021 kg...

  • A small block of mass m slides along the frictionless loop the loop track shown below....

    A small block of mass m slides along the frictionless loop the loop track shown below. If it starts from rest at point A, what is the speed of the block at point B? (v = squareroot (10 g R)) What is the net force acting on the block at point C? (Don't forget the gravitational force. (F = -mg (8i + j) At what height above the bottom should the block be released so that the normal force exerted...

  • PRINTER VERSION <BACK NEXT Chapter 08, Problem 031 A block with mass m = 3.69 kg...

    PRINTER VERSION <BACK NEXT Chapter 08, Problem 031 A block with mass m = 3.69 kg is placed against a spring on a frictionle incline with angle = 23.5° (see the figure). (The block is not attached the spring.) The spring, with spring constant k = 28 N/cm, is compresse 21.1 cm and then released. (a) What is the elastic potential energy of t. compressed spring? (b) What is the change in the gravitational potentia energy of the block-Earth system...

  • In the figure, a frictionless roller coaster car of mass m = 637 kg tops the...

    In the figure, a frictionless roller coaster car of mass m = 637 kg tops the first hill with speed v0 = 19.3 m/s at height h = 37.2 m. How much work does the gravitational force do on the car from that point to (a) point A, (b) point B, and (c) point C? If the gravitational potential energy of the car-Earth system is taken to be zero at C, what is its value when the car is at...

  • A block with mass m = 1.47 kg is placed against a spring on a frictionless...

    A block with mass m = 1.47 kg is placed against a spring on a frictionless incline with angle 0 = 37.10 (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 19 N/cm, is compressed 22.5 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT