Question

Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. Substance B ha

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium....

    Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.38 g and its initial temperature is 20.7 ∘C. The mass of substance B is 25.6 g and its initial temperature is 52.0 ∘C. The final temperature of both substances at thermal equilibrium is 47.0 ∘C. If the specific heat capacity of substance B is 1.17 J/g⋅∘C, what is the specific heat capacity of substance A? Express your...

  • Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass...

    Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.21 g and its initial temperature is 20.1 ∘C. The mass of substance B is 25.4 g and its initial temperature is 52.2 ∘C. The final temperature of both substances at thermal equilibrium is 47.0 ∘C. If the specific heat capacity of substance B is 1.17 J/g⋅∘C, what is the specific heat capacity of substance A? C =                 ...

  • wo substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass o...

    wo substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.04 g and its initial temperature is 20.0 ∘ C . The mass of substance B is 25.2 g and its initial temperature is 52.3 ∘ C . The final temperature of both substances at thermal equilibrium is 46.4 ∘ C . If the specific heat capacity of substance B is 1.17 J/(g⋅ ∘ C ), what is...

  • 3. Two substances, A and B, initially at different temperatures, come into contact and reach thermal...

    3. Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 8.45 grams and its initial temperature is 25°C. The mass of substance B is 30.7 grams and its initial temperature is 52.7°C. If the specific heat of substance B is 0.386 J/gºC and the specific heat of substance A is 4.18 J/gºC, what is the equilibrium (final) temperature of both substances?

  • MISSED THIS? Read Section 7.4 (Pages 276 - 278); Watch KCV 7.4, IWE 7.3 Two substances,...

    MISSED THIS? Read Section 7.4 (Pages 276 - 278); Watch KCV 7.4, IWE 7.3 Two substances, A and B. which are of equal mass but at different temperatures, come into thermal contact. The specific heat capacity of substance B is three times larger than the specific heat capacity of substance Which statement is true of the temperature of the two substances when they reach thermal equilibrium? (Assume no heat loss other than the thermal transfer between the substance The final...

  • 1. A 31.6 g wafer of pure gold initially at 69.4 ∘C is submerged into 63.8...

    1. A 31.6 g wafer of pure gold initially at 69.4 ∘C is submerged into 63.8 g of water at 27.7 ∘C in an insulated container. What is the final temperature of both substances at thermal equilibrium? 2.Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.04 gand its initial temperature is 21.0 ∘C . The mass of substance B is 25.5 gand its initial temperature is...

  • When you mix two substances that are initially at different temperatures, the hotter substance cools and...

    When you mix two substances that are initially at different temperatures, the hotter substance cools and the colder substance warms until they reach a common temperature. Then the substances are said to be in thermal equilibrium. For our purposes assume that the heat is exchanged only between the hot and cold materials and that no heat is lost to the surroundings. The specific heat capacity of water is 1.0 cal/(g Co) and the specific heat capacity of copper is 0.092...

  • ③ 28 of 32 Review Constants Periodic Table Part A Which statement is true of the...

    ③ 28 of 32 Review Constants Periodic Table Part A Which statement is true of the temperature of the two substances when they reach thermal equilibrium? (Assume no heat loss other than the thermal transfer between the substances.) The final temperature of both substances will be closer to the initial temperature of substance A than the initial temperature of substance B. The final temperature of substance A will be greater than the final temperature of substance B. The final temperature...

  • Two vessels A and B each contain N molecules of the same ideal monatomic gas at the same pressure P. Initially, the two...

    Two vessels A and B each contain N molecules of the same ideal monatomic gas at the same pressure P. Initially, the two vessels are thermally isolated from each other, and have initial temperatures TA and Ta respectively. The two vessels are brought into thermal contact, and reach equilibrium at the same pressure P and the new final temperature 7, 4-2 (a) Calculate an expression for the final temperature in terms of the initial temperatures. [2 marks] (b) Find the...

  • Two initially separated objects, make thermal contact, m_1, c_1 and T_1 are respectively the mass, specific...

    Two initially separated objects, make thermal contact, m_1, c_1 and T_1 are respectively the mass, specific heat and temperature of the first object and m_2, c_2 and T_2 are respectively the corresponding of the second object. The initial temperatures are T_20 <T_10. While body 1 slowly cools, 2 heats up slowly. a) Calculate T_2 (T_1) b) Find the change in deltropy entropy as a function of T_1 c) show that deltaS is a maximum when both bodies reach thermal equilibrium

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT