Question
2. If a silicon sample has E - Ef = 0.28 eV what is its type and minority carrier concentration? [2 pts.]

Please only answer if you are CONFIDENT that your answer is correct, thanks

2. If a silicon sample has Ec-Er = 0.28 eV what is its type and minority carrier concentration? [2 pts.] a. n-type; 7x10cm*, b. p-type; 1.5x10 cm c. n-type: 3.2x10 cm d. p-type; 3.2x10 cm
0 0
Add a comment Improve this question Transcribed image text
Answer #1

No NA こ 0.2 In 0 29 14 to (hde )

Add a comment
Know the answer?
Add Answer to:
2. If a silicon sample has E - Ef = 0.28 eV what is its type...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a sample of silicon at 300 K in which the Fermi level is found 0.22...

    Consider a sample of silicon at 300 K in which the Fermi level is found 0.22 eV above the top of the valence band. a) What type of semiconductor is this sample? b) Sketch the band diagram, labelling Ev, E., E. EF, E. – EF, EF - Ec, and Ea or Ed as applicable. c) What is the carrier concentration of electrons and holes in this sample at thermal equilibrium?

  • 2. (20 pts) - A Silicon sample doped n-type with Nd = 5x10 cm has an...

    2. (20 pts) - A Silicon sample doped n-type with Nd = 5x10 cm has an ideal Schottky barrier formed on its surface. The Silicon electron affinity is 4.0 eV, and the Silicon bandgap is 1.1 eV. The metal work function is 4.7 eV. Draw the equilibrium band diagram and for the reverse bias diagram with Vr = 3 V. In each diagram show the numerical values for OB, Vo , (Vo + Vr), EFs - Ej, Ec-EFs, and qVr

  • 6. A silicon wafer is doped with donor atoms, N-5x0 cm(bonus question) (a) Determine (Ec-EF), (EF...

    6. A silicon wafer is doped with donor atoms, N-5x0 cm(bonus question) (a) Determine (Ec-EF), (EF-Ev), (Ep-E) at 300 K. Assume all the donor atoms are ionized. (b) Plot the position of Fermi level (EF) in the bandgap as a function of temperature for 300 Ts700 K. In this temperature range, it can be assumed that all the donor atoms are ionized. (c) Plot the position of Fermi level (Er) in the bandgap as acceptor atoms are added (N.- 104,...

  • 3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels...

    3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels and have the properties listed below. Case 1: Case 2: Case 3: Case 4: Ex-Ey = 0.15 eV Ef-Ey=0.88 eV EF-Ey = 0.55 eV Ex-Ey = 1.09 eV The four cases above show the position of the Fermi Level Er relative to the valence band edge Ev.at dilterent doping levels. a) identify each sample as degenerate and nondegenerate. b) which nondegenerate case shows heavy...

  • B2 Consider a diode formed by making a p-n junction structure in a silicon sample as shown in Fig. B2. nt laver p-type...

    B2 Consider a diode formed by making a p-n junction structure in a silicon sample as shown in Fig. B2. nt laver p-type Si Fig. B2 (a). If the dopant concentrations of the n layer and the p-type silicon are 6x101" cm and 8x10 cm respectively, calculate the built-in potential of the p-n junction at room temperature (300 K) 15 (3 marks) (b). Due to overheating of the silicon sample, the diode has an operation temperature of 200 °C and...

  • 2. The equilibrium and steady state conditions before and after illumination of a silicon semicon...

    2. The equilibrium and steady state conditions before and after illumination of a silicon semiconductor are characterized by the energy band shown in figure below. Determine for before and after illumination: (Assume room temperature, and use the semiconductor parameters given in the textbook) a) no and po the equilibrium carrier concentrations b) n and p under steady state conditions. c) No? d) e) Do we have low injection condition when the semiconductor is illuminated? What is the resistivity of the...

  • Problem 3 (25 points) Consider a MOS capacitor with p polysilicon gate and p-type silicon substrate with NA 1016 cm3. Ef- Ev in the polysilicon gate. Assume the following parameters: I200A, , 1.5x10°...

    Problem 3 (25 points) Consider a MOS capacitor with p polysilicon gate and p-type silicon substrate with NA 1016 cm3. Ef- Ev in the polysilicon gate. Assume the following parameters: I200A, , 1.5x10° cm*,E, -3.9x8.854x104FIcm ox a) (5 points) Calculate the metal-semiconductor work function difference. b) (5 points) Calculate the surface potential at the threshold inversion. c) (5 points) Calculate the depletion width (in μm) at the threshold inversion. d) (5 points) Calculate the flat band voltage. e) (5 points)...

  • 2.) Starting with intrinsic silicon with mobilities of n = 1350 cm2 N s and =...

    2.) Starting with intrinsic silicon with mobilities of n = 1350 cm2 N s and = 480 cm2 Nis: a. Find the resistivity p of the silicon. b. If the silicon is now doped with 101/cm-of B (Boron), find the majority and minority carrier concentrations. What is the density of fixed charge in the material (immobile ions)? C. What type of material is this (n type or p type)? d. What is the majority carrier (hole or electron)? e. Find...

  • 1. Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction...

    1. Define the majority carrier concentration in an n-type Si semiconductor in terms of the conduction band edge energy Ec and the Fermi energy Ep 2 marks Find an expression for Ec - Ep, i.e, the difference between the conduction band edge energy and the Fermi energy in terms of the donor concentration Np. 4 marks Determine the concentration of donor impurity atoms that must be added to silicon that Ec Ef = 0.2 eV So 4 marks

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT