Question

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Power output P =5MW, =>

heat rate Q = 5*10^6/0.35 =14.2857*10^6 W

b) Mass Energy Density =50 MJ/kg

=> amount methane needed = m(kg/s) * 50*10^6 J/kg =14.2857*10^6 J/s

=> m (kg/s) =14.2857*10^6/(50*10^6 ) =0.2857 kg/s = 0.2857 kg/(1s*1hr/3600s) =1028.5704 kg/hr

Add a comment
Know the answer?
Add Answer to:
A 5 MW gas turbine power plant is reported to have a thermodynamic efficiency of 35%....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters...

    A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters the compressor of the gas turbine at 100kPa, 300K, and is compressed to 1200kPa. The isentropic efficiency of the compressor is 84%. The conditions at the inlet to the turbine are 1200kPa and 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100kPa. The air then passes through the interconnecting heat exchanger, and is finally...

  • A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a...

    A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a simple Rankine cycle for the bottoming cycle. Atmospheric air enters the compressor at 101 kPa and 20 °C, and the maximum gas cycle temperature is 1100 °C. The compressor pressure ratio is 8. The gas stream leaves the heat exchanger at the saturation temperature of the steam flowing through the heat exchanger. Steam enters the heat exchanger at a pressure of 6 MPa and...

  • Problem 1 0/5 points (0%) Consider a combined gas-steam power plant that has a net power...

    Problem 1 0/5 points (0%) Consider a combined gas-steam power plant that has a net power output of 500 MW. The pressure ratio of the gas-turbine cycle is 12. Air enters the compressor at 308 K and the turbine at 1300 K. The combustion gases leaving the gas turbine are used to heat the steam at 9 MPa to 360°C in a heat exchanger. The combustion gases leave the heat exchanger at 460 K. An open feedwater heater incorporated with...

  • A combined gas–steam power plant has been designed with a net power output of 450 MW....

    A combined gas–steam power plant has been designed with a net power output of 450 MW. The pressure ratio of the gas-turbine cycle is 14. Air enters the compressor at 300 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 8 MPa to 400 C in a heat exchanger. The combustion gases leave the heat exchanger at 460 K. An open feedwater heater incorporated with the steam cycle...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

  • C. (35%) A power plant operates on a superheat vapor power cycle with water is the...

    C. (35%) A power plant operates on a superheat vapor power cycle with water is the working fluid. Superheated steam enters the turbine at 80 bar, 480° C, and expands to 0.08 bar to the condenser and becomes saturated liquid enters the feed water pump. The net cycle work output is 100 MW. Assume isentropic process exists at the turbine and the pump. (a) Sketch the schematic and T-S diagram of the power cycle (5%), (b) determine the heat input...

  • 5. A coal fired plant generates 1000 MW of power with a thermal efficiency of 4070....

    5. A coal fired plant generates 1000 MW of power with a thermal efficiency of 4070. a. What is the heat input to the plant? b. If the plant burns anthracite coal with a heat of combustion of 26.5 MJ/kg, how much coal (in kg) does the plant use per day? c. How much heat is rejected to the river nearby? Assume all waste heat goes to ine ne d. Assume the efficiency is very near the Carnot efficiency. If...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT