Question

A combined gas–steam power plant has been designed with a net power output of 450 MW....

A combined gas–steam power plant has been designed with a net power output of 450 MW. The pressure ratio of the gas-turbine cycle is 14. Air enters the compressor at 300 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 8 MPa to 400 C in a heat exchanger. The combustion gases leave the heat exchanger at 460 K. An open feedwater heater incorporated with the steam cycle operates at a pressure of 0.6 MPa. The condenser pressure is 20 kPa. Assuming all the compression and expansion processes to be isentropic, determine (a) the mass flow rate ration of air to steam, (b) the required rate of heat input in the combustion chamber, and (c) thermal efficiency of the combined cycle.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(2) given T Wreta 450 mW YP = 14 5 Тg = 3 cok smpa 4 To= 1400k Ege 160K=Tiz mai О. 6м Ра 3 Mateam ZokPa 7 din = combustion chat state-s Ps= 8MP4 hs=3138.0kJ lig (2) (turbine Inlet) T5= 400c Ss= 6.65 KJ 1kgK at state-G » Stz S5 2 = 16 So- Suq, ovo Gudmair Caa (Tiia T12) = 141 at state - 11 =) Tio TU = (A = ( 141 14 (3) TO Tila - 1400 (1490484 (14)04/14 Til = 658.7k Now Wo=mair ns-ne 3138-678.51 (4) meteem CpaCTI-T2) loos(658. 7460) Mair 12.31 Answers m glean for onen feed water. y = har hz. normWtotal Want aans who Mar (5) total work Quithelt per unit (40 405.77 + leo tut 946.25 ) mass of oir 482.63 Whet 450000 ń How

Add a comment
Know the answer?
Add Answer to:
A combined gas–steam power plant has been designed with a net power output of 450 MW....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1 0/5 points (0%) Consider a combined gas-steam power plant that has a net power...

    Problem 1 0/5 points (0%) Consider a combined gas-steam power plant that has a net power output of 500 MW. The pressure ratio of the gas-turbine cycle is 12. Air enters the compressor at 308 K and the turbine at 1300 K. The combustion gases leaving the gas turbine are used to heat the steam at 9 MPa to 360°C in a heat exchanger. The combustion gases leave the heat exchanger at 460 K. An open feedwater heater incorporated with...

  • Problem 2/2 (50%) -The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio...

    Problem 2/2 (50%) -The gas-turbine cycle of a combined gas-steam power plant has a pressure ratio of 12. Air enters the compressor at 310 K and the turbine at 1400 K. The combustion gases leaving the gas turbine are used to heat the steam at 12.5 MPa to 500 C in a heat exchanger. The combustion gases leave the heat exchanger at 247"C. Steam expands in a high pressure turbine to a pressure of 2.5 MPa and is reheated in...

  • A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters...

    A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters the compressor of the gas turbine at 100kPa, 300K, and is compressed to 1200kPa. The isentropic efficiency of the compressor is 84%. The conditions at the inlet to the turbine are 1200kPa and 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100kPa. The air then passes through the interconnecting heat exchanger, and is finally...

  • Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine c...

    Problem4 (a) (40 points) A combined gas-steam powe cycles. The ideal Brayton and Rankine plant operates on Rankine cycle has a reheater. The Brayton cycle operates on a gas- of the gas-turbine cycle 1400 K The 15MPa to ercooling, reheating, and regeneration cycle. The pressure ratio 300 K for compressor stages is do Air enters compressors a combustion gases leaving the lower pressure gas turbine are used to heat the steam at C in a heat exchanger. The combustion gases...

  • The gas turbine cycle of a gas-steam combined cycle power plant has a pressure ratio of...

    The gas turbine cycle of a gas-steam combined cycle power plant has a pressure ratio of 12. The air enters the compressor at 310 K and 100 kPa (1) and the turbine at 1400 K (3). The combustion gases leaving the gas turbine (4) are used to heat the steam to 12.5 MPa up to 500 °C (6) in a heat exchanger. The flue gas exits the heat exchanger (5) at 247 °C. The steam is expanded in a high...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

  • 1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle...

    1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle and a simple Rankine cycle for the water vapor cycle. Atmospheric air enters the compressor at a rate of 88.2 lbm / s, at 14.7 psia and 59 ° F, and the maximum gas cycle temperature is 1,742 ° F. The pressure ratio in the compressor is 7. The isentropic efficiency of both the compressor and the turbine is 80%. Gas exits the heat...

  • A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a...

    A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a simple Rankine cycle for the bottoming cycle. Atmospheric air enters the compressor at 101 kPa and 20 °C, and the maximum gas cycle temperature is 1100 °C. The compressor pressure ratio is 8. The gas stream leaves the heat exchanger at the saturation temperature of the steam flowing through the heat exchanger. Steam enters the heat exchanger at a pressure of 6 MPa and...

  • 2. Consider a combined gas steam power cycle. The gas cycle is a simple Brayton cycle...

    2. Consider a combined gas steam power cycle. The gas cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters at 9.8 kg / s at the compressor at 15 ° C and 100 kPa, and at the gas turbine at 950 ° C. The steam cycle is a Rankine cycle with overheating between the pressure limits of 6 MPa and 10 kPa. The water vapor is heated in the heat exchanger at a rate...

  • A combined cycle power plant consists of two gas turbines; cach produces a net power of...

    A combined cycle power plant consists of two gas turbines; cach produces a net power of 160 MW, and a 70 MW steam power cycle. The combustion of the fuel in the combustion chamber produces hot gases at 1400°C. The hot gases leaving the gas turbines are used to generate steam through the heat recovery steam generator (Boiler). The hot gases enter the heat recovery steam generator at 880°C and leaves at 660°C. Water enters the isentropic pump as saturated...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT