Question

4. Consider the differential equation y (y 1)(y2)(y-3) (a) Sketch a solution to the equation for the initial conditions y(0)

please type the answer or write the answer neatly!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

DOMS No Dat dy (y-I P CY-2)yS) Intgrating bo th 5ieks -) (y-D f dx 2 by tooy divisin: ly-h)tdyx 2 Y-D (y) frdy-fady tSd fde 2iniid Canditions have yO yol- be come + 2 solving toy we get Log (4) - Y7 c O7387- greoh for selutin s ar klas similerty fr15 2.0 0.5 1.0 (y from-0.2 to 2.2) -10 y from-3.2 to 5 2) POWERED BY THE WOLFRAM LAN Dowrload Page

Add a comment
Know the answer?
Add Answer to:
please type the answer or write the answer neatly! 4. Consider the differential equation y (y...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the differential equation, L[y] = y'' + p(t)y' + q(t)y = 0, (1) whose coefficients...

    Consider the differential equation, L[y] = y'' + p(t)y' + q(t)y = 0, (1) whose coefficients p and q are continuous on some open interval I. Choose some point t0 in I. Let y1 be the solution of equation (1) that also satisfies the initial conditions y(t0) = 1, y'(t0) = 0, and let y2 be the solution of equation (1) that satisfies the initial conditions y(t0) = 0, y'(t0) = 1. Then y1 and y2 form a fundamental set...

  • Consider the differential equation y' (t) = (y-4)(1 + y). a) Find the solutions that are...

    Consider the differential equation y' (t) = (y-4)(1 + y). a) Find the solutions that are constant, for all t2 0 (the equilibrium solutions). b) In what regions are solutions increasing? Decreasing? c) Which initial conditions y(0) = A lead to solutions that are increasing in time? Decreasing? d) Sketch the direction field and verify that it is consistent with parts a through c. a) The solutions are constant for (Type an equation. Use a comma to separate answers as...

  • Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72,...

    Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72, roots of the characteristic polynomial of the equation above. 11,2 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = -4, y'(0) = 1. g(t) = M Consider the differential equation y" – 64 +9y=0. (a) Find r1...

  • please answer b. and c. Problem 1. Consider the differential equation given by (a) On the...

    please answer b. and c. Problem 1. Consider the differential equation given by (a) On the axes provided below, sketch a slope field for the given differential equation at the nine points indicated. locales de mor t e wold qolution to the given differential equation with the initial condition (b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 3. Use Euler's method starting at x = 0, with a...

  • Consider the differential equation y" + 8y' + 15 y=0. (a) Find r1 r2, roots of...

    Consider the differential equation y" + 8y' + 15 y=0. (a) Find r1 r2, roots of the characteristic polynomial of the equation above. = 11, 12 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = 4, y(0) = -3. g(t) = M (10 points) Solve the initial value problem y" - 54' +...

  • Consider the ordinary differential equation: t2y" + 3ty' +y = 0. 1 (3 points) e) Use...

    Consider the ordinary differential equation: t2y" + 3ty' +y = 0. 1 (3 points) e) Use Abel's formula to find the Wronskian of any two solutions of this equation and W[y1,y2](t). What do you observe? compare it to = t1 and y2(t) = t-1 nt represent a fundamental set of solu f) (2 points) Determine if y1 (t) tions (2 points) Find the general solution of t2y" +3ty' +y = 0. g) Solve the initial value problem t2y" + 3ty/...

  • Consider the differential equation y' (t) = (y-2)(1 + y). a) Find the solutions that are...

    Consider the differential equation y' (t) = (y-2)(1 + y). a) Find the solutions that are constant, for all t20 (the equilibrium solutions). b) In what regions are solutions increasing? Decreasing? c) Which initial conditions y(0) = A lead to solutions that are increasing in time? Decreasing? d) Sketch the direction field and verify that it is consistent with parts a through c. a) The solutions are constant for (Type an equation. Use a comma to separate answers as needed.)...

  • Consider the differential equation y' (t) = (y-2)(1 + y). a) Find the solutions that are...

    Consider the differential equation y' (t) = (y-2)(1 + y). a) Find the solutions that are constant, for all t20 (the equilibrium solutions). b) In what regions are solutions increasing? Decreasing? c) Which initial conditions y(0) = A lead to solutions that are increasing in time? Decreasing? d) Sketch the direction field and verify that it is consistent with parts a through c. a) The solutions are constant for (Type an equation. Use a comma to separate answers as needed.)...

  • Consider the differential equation dy/dx = (y-1)/x.

    Consider the differential equation dy/dx = (y-1)/x. (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated. (b) Let y = f (x) be the particular solution to the given differential equation with the initial condition f (3) = 2. Write an equation for the line tangent to the graph of y= f (x) at x = 3. Use the equation to approximate the value of f (3.3). (c) Find the particular solution y...

  • (1 point) a. Consider the differential equation: d2y 0.16y-0 dt2 with initial conditions dt (0)-3 y(0)--1 and Find the...

    (1 point) a. Consider the differential equation: d2y 0.16y-0 dt2 with initial conditions dt (0)-3 y(0)--1 and Find the solution to this initial value problem b. Assume the same second order differential equation as Part a. However, consider it is subject to the following boundary conditions: y(0)-2 and y(3)-7 Find the solution to this boundary value problem. If there is no solution, then write NO SOLUTION. If there are infinitely many solutions, then use C as your arbitrary constant (e.g....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT