Question

3. -12 points BoyceDIfiEQ10 320 Consider the differential equation, whose coefficients ρ and q are continuous on some open inConsider the differential equation, L[y] = y'' + p(t)y' + q(t)y = 0, (1) whose coefficients p and q are continuous on some open interval I. Choose some point t0 in I. Let y1 be the solution of equation (1) that also satisfies the initial conditions y(t0) = 1, y'(t0) = 0, and let y2 be the solution of equation (1) that satisfies the initial conditions y(t0) = 0, y'(t0) = 1. Then y1 and y2 form a fundamental set of solutions of equation (1). Find the fundamental set of solutions specified by the theorem above for the given differential equation and initial point. y'' + 6y' − 7y = 0, t0 = 0 y1(t) = Incorrect: Your answer is incorrect. y2(t) = Incorrect: Your answer is incorrect.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given hat -O G. value. Substitute

Add a comment
Know the answer?
Add Answer to:
Consider the differential equation, L[y] = y'' + p(t)y' + q(t)y = 0, (1) whose coefficients...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72,...

    Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72, roots of the characteristic polynomial of the equation above. 11,2 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = -4, y'(0) = 1. g(t) = M Consider the differential equation y" – 64 +9y=0. (a) Find r1...

  • Consider the differential equation y" + 8y' + 15 y=0. (a) Find r1 r2, roots of...

    Consider the differential equation y" + 8y' + 15 y=0. (a) Find r1 r2, roots of the characteristic polynomial of the equation above. = 11, 12 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = 4, y(0) = -3. g(t) = M (10 points) Solve the initial value problem y" - 54' +...

  • A) Assume that y1(c) t and y2)te are solutions of the differential equation t2y_ t(t + 2))" + t(t...

    a) Assume that y1(c) t and y2)te are solutions of the differential equation t2y_ t(t + 2))" + t(t + 2)y-0, t > 0 Do y1(t) and y2() form a fundamental set of solutions of the O.D.E.? C) State the general solution for this O.D.E. a) Assume that y1(c) t and y2)te are solutions of the differential equation t2y_ t(t + 2))" + t(t + 2)y-0, t > 0 Do y1(t) and y2() form a fundamental set of solutions of...

  • Consider the ordinary differential equation: t2y" + 3ty' +y = 0. 1 (3 points) e) Use...

    Consider the ordinary differential equation: t2y" + 3ty' +y = 0. 1 (3 points) e) Use Abel's formula to find the Wronskian of any two solutions of this equation and W[y1,y2](t). What do you observe? compare it to = t1 and y2(t) = t-1 nt represent a fundamental set of solu f) (2 points) Determine if y1 (t) tions (2 points) Find the general solution of t2y" +3ty' +y = 0. g) Solve the initial value problem t2y" + 3ty/...

  • 2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı...

    2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı = et and y2 = t+1 are a fundamental set of solutions to the associated homogeneous equation. (b) Find a particular solution using variation of parameters.

  • find Y1=, Y2=, and W(t)= (1 point) Find the function yi of t which is the...

    find Y1=, Y2=, and W(t)= (1 point) Find the function yi of t which is the solution of 25y" – 40y' + 12y = 0 y(0) = 1, yf(0) = 0. with initial conditions Yi = Find the function y2 of t which is the solution of 25y" – 40y' + 12y = 0 with initial conditions Y2 = Find the Wronskian W(t) = W(y1, y2). W(t) = Remark: You can find W by direct computation and use Abel's theorem...

  • If y is a known nonvanishing solution of y" p(t)y + q(t)y 0, then a second...

    If y is a known nonvanishing solution of y" p(t)y + q(t)y 0, then a second solution y2 satisfies 2 У1? where W(y1, y2) is the Wronskian of y1 and y2. To determine y2, use Abel's formula, W(y1, Y2)(t) =C.eJP(t) dt, where C is certain constant that depends on y1 and y2, but not on t. Use the method above o find a second independent solution of the given equation. (х — 1)у" - ху" + у %3D 0, x>...

  • Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a....

    Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a. Given that yı(t) = 3t is a solution, apply the reduction of order method to find another solution y2 for which yı and y2 form a fundamental solution set. i. Starting with yi, solve for w in yıw' + (2y + p(t)yı)w = 0 so that w(1) = -3. w(t) = ii. Now solve for u where u = w so that u(1) =...

  • (1 point) The general solution of the homogeneous differential equation can be written as 2 where...

    (1 point) The general solution of the homogeneous differential equation can be written as 2 where a, b are arbitrary constants and is a particular solution of the nonhomogeneous equation By superposition, the general solution of the equation 2y 5ryy 18z+1 isyp so yax-1+bx-5+1+3x NOTE: you must use a, b for the arbitrary constants. Find the solution satisfying the initial conditions y(1) 3, y'(1) 8 The fundamental theorem for linear IVPs shows that this solution is the unique solution to...

  • Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2,...

    Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2, roots of the characteristic polynomial of the equation above. 11,12 M (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. yı(t) M y2(t) = M (C) Find the Wronskian of the fundamental solutions you found in part (b). W(t) M (d) Use the fundamental solutions you found in (b) to find functions ui and Usuch...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT