Question

2. Consider the differential equation ty – (t+1)y +y = 2t2 t>0. (a) Check that yı = et and y2 = t+1 are a fundamental set o

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given differential Equation is TggI ty-( ty+y= gt, 770 → y1 (94 + £y=at – Y+ Py + y =R Pio,R are f(t) only Here; 1+4uJ++

Add a comment
Know the answer?
Add Answer to:
2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2,...

    Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2, roots of the characteristic polynomial of the equation above. 11,12 M (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. yı(t) M y2(t) = M (C) Find the Wronskian of the fundamental solutions you found in part (b). W(t) M (d) Use the fundamental solutions you found in (b) to find functions ui and Usuch...

  • 3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a...

    3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a value ofr for which y = et is a solution to the corresponding homogeneous differential equation. (b) Use Reduction of Order to find a second, linearly independent, solution to the correspond- ing homogeneous differential equation. (c) Use Variation of Parameters to find a particular solution to the nonhomogeneous differ- ential equation and then give the general solution to the differential equation.

  • (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a)...

    (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a) Check that y(t) = 1-1 is a solution to this equation. (b) Find another solution (t) such that yı(t) and (t) are linearly independent (that is, wit) and y(t) form a fundamental set of solutions for the differential equation).

  • 3. Consider the differential equation ty" - (t+1)yy = te2, t> 0. ert is a solution...

    3. Consider the differential equation ty" - (t+1)yy = te2, t> 0. ert is a solution to the corresponding homogeneous (a) Find a value of r for which y = differential equation (b) Use Reduction of Order to find a second, linearly independent, solution to the correspond- ing homogeneous differential equation

  • Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a....

    Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a. Given that yı(t) = 3t is a solution, apply the reduction of order method to find another solution y2 for which yı and y2 form a fundamental solution set. i. Starting with yi, solve for w in yıw' + (2y + p(t)yı)w = 0 so that w(1) = -3. w(t) = ii. Now solve for u where u = w so that u(1) =...

  • 3. Given that yı(t) = t, y(t) = t, and yz(t) = are solutions to the...

    3. Given that yı(t) = t, y(t) = t, and yz(t) = are solutions to the homogeneous differential equation corresponding to ty" + t'y" – 2ty' + 2y = 2*, t > 0, use variation of parameters to find its general solution.

  • (a) Given yı = et is a solution, find another linearly independent solution to the differential...

    (a) Given yı = et is a solution, find another linearly independent solution to the differential equation. ty" – (t + 1)y' + y = 0 (b) Use variation of parameters to find a particular solution to ty" – (t+1)y' +y=ť?,

  • 3 Consider the ordinary differential equation: ty +3tyy 0. e) (2 points) Find the Wronskian Wly,...

    3 Consider the ordinary differential equation: ty +3tyy 0. e) (2 points) Find the Wronskian Wly, yal(t). f) (2 points) Calculate e I podt and compare it to Wl vlt). What do you observe? Does y1(t) = t-1 and y2(t) = t-11nt represent a fundamental set of solutions? g) (2 points) Why? h) (2 points) Find the general solution of ty" +3ty'y 0 İ) (4 points) Solve the initial value problem t2y't3ty'+y = 0, t > 0 with y(1) =...

  • onsider the differential equation y" - 7y + 12 y = 3 cos(3t). (a) Find r....

    onsider the differential equation y" - 7y + 12 y = 3 cos(3t). (a) Find r. 12. roots of the characteristic polynomial of the equation above. ri, r2 = 3,4 (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. Yi (t) = 0 (31) »2(t) = 0 (41) (c) Find a particular solution y, of the differential equation above. y,(t) = Consider the differential equation y! -8y + 15 y =...

  • Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72,...

    Consider the differential equation y" – 7y + 12 y = 0. (a) Find r1, 72, roots of the characteristic polynomial of the equation above. 11,2 M (b) Find a set of real-valued fundamental solutions to the differential equation above. yı(t) M y2(t) M (C) Find the solution y of the the differential equation above that satisfies the initial conditions y(0) = -4, y'(0) = 1. g(t) = M Consider the differential equation y" – 64 +9y=0. (a) Find r1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT