Question

3. Consider the differential equation ty - (t+1)yy = te2, t> 0. ert is a solution to the corresponding homogeneous (a) Find

0 0
Add a comment Improve this question Transcribed image text
Answer #1

3. Conrider the Dalperenkel equation ty- (++) y + y =0 ,t>o - (1) (a) het y = ezt be a solution of (1) .:6 (t) (t+1). Certy

Add a comment
Know the answer?
Add Answer to:
3. Consider the differential equation ty" - (t+1)yy = te2, t> 0. ert is a solution...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a...

    3. Consider the differential equation ty" - (t+1)y + y = t?e?', t>0. (a) Find a value ofr for which y = et is a solution to the corresponding homogeneous differential equation. (b) Use Reduction of Order to find a second, linearly independent, solution to the correspond- ing homogeneous differential equation. (c) Use Variation of Parameters to find a particular solution to the nonhomogeneous differ- ential equation and then give the general solution to the differential equation.

  • 2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı...

    2. Consider the differential equation ty" – (t+1)y' +y = 2t2 t>0. (a) Check that yı = et and y2 = t+1 are a fundamental set of solutions to the associated homogeneous equation. (b) Find a particular solution using variation of parameters.

  • Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2,...

    Consider the differential equation e24 y" – 4y +4y= t> 0. t2 (a) Find T1, T2, roots of the characteristic polynomial of the equation above. 11,12 M (b) Find a set of real-valued fundamental solutions to the homogeneous differential equation corresponding to the one above. yı(t) M y2(t) = M (C) Find the Wronskian of the fundamental solutions you found in part (b). W(t) M (d) Use the fundamental solutions you found in (b) to find functions ui and Usuch...

  • (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a)...

    (3) Consider the differential equation ty' + 3ty + y = 0, 1 > 0. (a) Check that y(t) = 1-1 is a solution to this equation. (b) Find another solution (t) such that yı(t) and (t) are linearly independent (that is, wit) and y(t) form a fundamental set of solutions for the differential equation).

  • a) Find the general solution of the differential equation Y'(B) + 2y(s) = (1)3 8>0. b)...

    a) Find the general solution of the differential equation Y'(B) + 2y(s) = (1)3 8>0. b) Find the inverse Laplace transform y(t) = --!{Y(s)}, where Y(s) is the solution of part (a). c) Use Laplace transforms to find the solution of the initial value problem ty"(t) – ty' (t) + y(t) = te", y(0) = 0, y(0) = 1, fort > 0. You may use the above results if you find them helpful. (Correct solutions obtained without Laplace transform methods...

  • 3 Consider the ordinary differential equation: ty +3tyy 0. e) (2 points) Find the Wronskian Wly,...

    3 Consider the ordinary differential equation: ty +3tyy 0. e) (2 points) Find the Wronskian Wly, yal(t). f) (2 points) Calculate e I podt and compare it to Wl vlt). What do you observe? Does y1(t) = t-1 and y2(t) = t-11nt represent a fundamental set of solutions? g) (2 points) Why? h) (2 points) Find the general solution of ty" +3ty'y 0 İ) (4 points) Solve the initial value problem t2y't3ty'+y = 0, t > 0 with y(1) =...

  • Use the differential equation approach to find Vo(t) for t> 0 in the circuit in the...

    Use the differential equation approach to find Vo(t) for t> 0 in the circuit in the figure below 1k0 Please round all numbers to 3 significant digits. Vo(t)

  • Q4 a) Find the general solution of the differential equation Y') + {y(t) = 8(6+1)5; 8>0....

    Q4 a) Find the general solution of the differential equation Y') + {y(t) = 8(6+1)5; 8>0. Y'8 8 >0. 8(8-1)3 b) Find the inverse Laplace transform y(t) = £ '{Y(3)}, where Y(s) is the solution of part (a). c) Use Laplace transforms to find the solution of the initial value problem ty"(t) – ty' (t) + y(t) = te, y(0) = 0, y(0) = 1, for t > 0. You may use the above results if you find them helpful....

  • Consider the autonomous differential equation dy dt = = y(k - y), t> 0, k >...

    Consider the autonomous differential equation dy dt = = y(k - y), t> 0, k > 0 (i) list the critical points (ii) sketch the phase line and classify the critical points according to their stability (iii) Determine where y is concave up and concave down (iv) sketch several solution curves in the ty-plane.

  • Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a....

    Consider the differential equation: -9ty" – 6t(t – 3)y' + 6(t – 3)y=0, t> 0. a. Given that yı(t) = 3t is a solution, apply the reduction of order method to find another solution y2 for which yı and y2 form a fundamental solution set. i. Starting with yi, solve for w in yıw' + (2y + p(t)yı)w = 0 so that w(1) = -3. w(t) = ii. Now solve for u where u = w so that u(1) =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT