Question

The conducting rod ab shown in the figure makes contact with metal rails ca and db. The apparatus is in a uniform magnetic fi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

- 0 motional emp of the rod is given by e-Blv But e = Ih : IR = Bbv v = It Now the force on the god is F - IBL - I - F Pettin

Add a comment
Know the answer?
Add Answer to:
The conducting rod ab shown in the figure makes contact with metal rails ca and db....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The conducting rod ab shown in the figure below makes contact with metal rails ca and db.

    The conducting rod ab shown in the figure below makes contact with metal rails ca and db. The apparatus is in a uniform magnetic field of 0.700 T, perpendicular to the plane of the figure.  (a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed 6.50 m/s. (b) In what direction does the current flow in the rod? (c) If the resistance of the circuit abdc is 1.50 Ω (assumed to be...

  • electric The conducting rod bd shown in the figure makes contact with metal rails ab and...

    electric The conducting rod bd shown in the figure makes contact with metal rails ab and cd. The apparatus is in a uniform magnetic field of 0.8 T. perpendicular to the plane of the figure. Length 1 = 98 cm. If the resistance of the circuit is 1.50 Ohm (assumed to be constant), find the force (magnitude and directions required to keep the rod moving to the right with a constant speed of 3.1 m/s. Ignore friction (Right is positive,...

  • Please show all work clearly, and show all steps, work, andcomplete all parts please!! Please...

    The conducting rod ab shown in the figure makes contact with metal rails ca and db. The apparatus is in a uniform magnetic field of 0.800 T, perpendicular to the plane of the figure. Find the magnitude of the EMF induced in the rod when it is moving to the right with a speed of 9.50 m/s. In what direction does the current flow in the rod (up or down)?

  • The conducting rod shown in the accompanying figure moves alongparallel metal rails that are 25-cm...

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 10 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25Ω. The rod moves at a constant speed of 5 m/s. Find:a) The current that flows through the resistanceb) The power supplied by the resistancec) The force...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • Question 7 The conducting rod shown in the figure has length L and is being pulled along horlizontal, frictionless, conducting rails at a constant metal strip. A uniform magnetic field, directed...

    Question 7 The conducting rod shown in the figure has length L and is being pulled along horlizontal, frictionless, conducting rails at a constant metal strip. A uniform magnetic field, directed of the magnetic fieid is 8-1.0 T. (a) What is the magnitude Assume that L15 cm, the speed of the rod is v -5.9 m/s, and the magnitude of emf induced in voits in the rod? (b) What is the current in amperes in the conducting loop? Assume that...

  • consider the apparatus shown in the figure to the right in which a conducting bar can...

    consider the apparatus shown in the figure to the right in which a conducting bar can be moved along two rails connect 0,206N X X X Consider the apparatus shown in the fig- ure to the right in which a conducting bar can be moved along two rails connected to a lightbulb. The whole system is im- mersed in a magnetic field fof magnitude B = 0.400 T perpendicular and into the page. The distance between the horizon- tal rails...

  • Example Variation Problem 27.30 Two parallel conducting rails with negligible resistance are 50.0 cm apart and...

    Example Variation Problem 27.30 Two parallel conducting rails with negligible resistance are 50.0 cm apart and are connected together at one end by an 16.8-2 resistor. A conducting bar, also with negligible resistance, is free to slide along the rails. The system is in a region where a 325-mT magnetic field points perpendicular to the plane of the rails, as shown in (Figure 1). Part A How fast should the bar be pulled in order to produce a current of...

  • As shown in the figure below, a metal rod is pulled to the right at constant...

    As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 102. What speed of the rod is required to produce...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT