Question

As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic fie
0 0
Add a comment Improve this question Transcribed image text
Answer #1

# induced em E The emp €= Brl from Flem Right Right hand rule the induced current will be clockwise Induced current i = E R I

Add a comment
Know the answer?
Add Answer to:
As shown in the figure below, a metal rod is pulled to the right at constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to...

    A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.790-T magnetic field. The bar rides on parallel metal rails connected through R = 25.5-Ω, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. A) Calculate the magnitude of the emf induced in the circuit. Express your answer using two significant figures. B)Find the direction of...

  • A 0.95 m long metal bar is pulled to the right at a steady 7.1 m/s perpendicular to a uniform

    Magnetic Flux: A 0.95 m long metal bar is pulled to the right at a steady 7.1 m/s perpendicular to a uniform, 2.20 T magnetic field. The bar rides on parallel metal rails connected through R= 144 Ω, as shown, so that the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. What is the current in the wire and what direction does it flow (Clockwise or Counterclockwise)

  • A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform

    A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.5T magnetic field. The bar rides on parallel metal rails connected through R = 24.0Ω, as shown in the figure below, so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. a) (5.0 pts) Calculate the magnitude of the emf induced in the circuit. b) (5.0 pts) Find the direction of the current induced in the...

  • A 0.344 m long metal bar is pulled to the left by an applied force F

    A 0.344 m long metal bar is pulled to the left by an applied force F. The bar rides on parallel metal rails connected through a 44.1 2 resistor, as shown in the following figure(Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.602 T magnetic field that is directed out of the plane of the figure. Part A At the instant when the bar is...

  • 3. A 0.650- m long metal bar is pulled to the right at a steady 5.0...

    3. A 0.650- m long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.750 T magnetic field. The bar rides on parallel metal rails connected through a 25.0 Ohm resistor. (1) Calculate the magnitude of the emf induced in the circuit (2) Calculate the current in the circuit and show its direction. (3) Which point has a higher potential? Explain it based on (6) Magnetic force on the charges in a moving...

  • Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a...

    Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a steady 6.0 m/s perpendicular to a uniform, 0.765-T magnetic field. The bar rides on parallel metal rails connected through R-24.5-2, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit Express your answer using two significant figures. Request Answer...

  • 23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at...

    23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at a constant speed of y 20 m/s. A uniform magnetic field directed out of the page has a magnitude of B-O1T If the rails are connected to a resistor of resistance R-4.0 Ω andan ideal battery of emf e-1.6V, find the magnitude and direction of the current flowing in the circuit formed. Assume that the bar and...

  • In the figure below, a metal bar sitting on two parallel conducting rails, connected to each other by a resistor, is pulled to the right at a constant speed.

    A vertical bar and two parallel horizontal rails lie in the plane of the page. The parallel rails run from left to right, with one a distance ℓ above the other. The left ends of the rails are connected by a vertical wire containing a resistor R. The vertical bar lies across the rails to the right of the wire. Force vector Fapp points from the bar toward the right.In the figure below, a metal bar sitting on two parallel...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • The conducting rod shown in the figure has length L and is being pulled along horizontal, frictio...

    The conducting rod shown in the figure has length L and is being pulled along horizontal, frictionless, conducting rails at a constant velocity. The rails are connected at one end with a metal strip. A uniform magnetic field, directed out of the page, fills the region in which the rod moves. Assume that L 8.3 cm, the speed of the rod is v = 4.4 m/s, and the magnitude of the magnetic field is B = 1.0 T. (a) what...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT