Question

A 0.95 m long metal bar is pulled to the right at a steady 7.1 m/s perpendicular to a uniform

Magnetic Flux: 

A 0.95 m long metal bar is pulled to the right at a steady 7.1 m/s perpendicular to a uniform, 2.20 T magnetic field. The bar rides on parallel metal rails connected through R= 144 Ω, as shown, so that the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. What is the current in the wire and what direction does it flow (Clockwise or Counterclockwise)

image.png

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

R. 0n

Add a comment
Know the answer?
Add Answer to:
A 0.95 m long metal bar is pulled to the right at a steady 7.1 m/s perpendicular to a uniform
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to...

    A 1.10-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.790-T magnetic field. The bar rides on parallel metal rails connected through R = 25.5-Ω, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. A) Calculate the magnitude of the emf induced in the circuit. Express your answer using two significant figures. B)Find the direction of...

  • A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform

    A 1.50-m-long metal bar is pulled to the right at a steady 4.0 m/s perpendicular to a uniform, 0.5T magnetic field. The bar rides on parallel metal rails connected through R = 24.0Ω, as shown in the figure below, so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. a) (5.0 pts) Calculate the magnitude of the emf induced in the circuit. b) (5.0 pts) Find the direction of the current induced in the...

  • Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a...

    Exercise 29.28 Constants Part A A 1.15-m-long metal bar is pulled to the right at a steady 6.0 m/s perpendicular to a uniform, 0.765-T magnetic field. The bar rides on parallel metal rails connected through R-24.5-2, as shown in the figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit Express your answer using two significant figures. Request Answer...

  • A 0.344 m long metal bar is pulled to the left by an applied force F

    A 0.344 m long metal bar is pulled to the left by an applied force F. The bar rides on parallel metal rails connected through a 44.1 2 resistor, as shown in the following figure(Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.602 T magnetic field that is directed out of the plane of the figure. Part A At the instant when the bar is...

  • 3. A 0.650- m long metal bar is pulled to the right at a steady 5.0...

    3. A 0.650- m long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.750 T magnetic field. The bar rides on parallel metal rails connected through a 25.0 Ohm resistor. (1) Calculate the magnitude of the emf induced in the circuit (2) Calculate the current in the circuit and show its direction. (3) Which point has a higher potential? Explain it based on (6) Magnetic force on the charges in a moving...

  • In the figure below, a metal bar sitting on two parallel conducting rails, connected to each other by a resistor, is pulled to the right at a constant speed.

    A vertical bar and two parallel horizontal rails lie in the plane of the page. The parallel rails run from left to right, with one a distance ℓ above the other. The left ends of the rails are connected by a vertical wire containing a resistor R. The vertical bar lies across the rails to the right of the wire. Force vector Fapp points from the bar toward the right.In the figure below, a metal bar sitting on two parallel...

  • A 0.204 m -long bar moves on parallel rails that are connected through a 6.05 Ω...

    A 0.204 m -long bar moves on parallel rails that are connected through a 6.05 Ω resistor, as shown in the following figure (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform magnetic field 1.45 T that is directed into the plane of the figure. At an instant when the induced current in the circuit is counterclockwise and equal to 1.70 A , what...

  • As shown in the figure below, a metal rod is pulled to the right at constant...

    As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 102. What speed of the rod is required to produce...

  • 23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at...

    23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at a constant speed of y 20 m/s. A uniform magnetic field directed out of the page has a magnitude of B-O1T If the rails are connected to a resistor of resistance R-4.0 Ω andan ideal battery of emf e-1.6V, find the magnitude and direction of the current flowing in the circuit formed. Assume that the bar and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT