Question

In the figure, two loudspeakers, separated by a distance of d1 = 2.89 m, are in...

In the figure, two loudspeakers, separated by a distance of d1 = 2.89 m, are in phase. Assume the amplitudes of the sound from the speakers are approximately the same at the position of a listener, who is d2 = 4.08 m directly in front of one of the speakers. Consider the audible range for normal hearing, 20 Hz to 20 kHz. (a) What is the lowest frequency that gives the minimum signal (destructive interference) at the listener's ear? (b) What is the lowest frequency that gives the maximum signal (constructive interference) at the listener's ear? (Take the speed of sound to be 343 m/s.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
In the figure, two loudspeakers, separated by a distance of d1 = 2.89 m, are in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two loudspeakers are located 3.85 m apart on an outdoor stage. A listener is 16.2 m...

    Two loudspeakers are located 3.85 m apart on an outdoor stage. A listener is 16.2 m from one and 17.3 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz to 20 kHz). (a) What is the lowest frequency fmin,1 that gives minimum signal (destructive interference) at the listener's location? By what number must fmin, 1...

  • Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The...

    Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The speed of sound is 340 m/s. Assume the amplitude of the sound from each speaker is approximately the same at the position of a listener, who is 3.75 m directly in front of one of the speakers. a) (10pts) For what three lowest frequencies will there be a minimum signal (destructive interference)? b) (10pts) For what three lowest frequencies will there be a maximum...

  • A.) Two loudspeakers are separated by a distance of 6.2 m. A listener sits directly in...

    A.) Two loudspeakers are separated by a distance of 6.2 m. A listener sits directly in front of one speaker at a distance of 6.4 m so that the two speakers and the listener form a right triangle. Find the lowest frequency for which the path difference from the speakers to the listener is an odd number of half-wavelengths. Assume the speed of sound is 340 m/s. B.) Find the second lowest frequency for which the path difference from the...

  • Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers a...

    Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers are wired oppositely as in ILL and emit equal amplitude sound waves. Explain how you know that at the point indicated that the interference is maximally constructive, perfectly destructive, or 5.0 m 636 1,25 84 1.25 m 686 Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343...

  • Two in-phase loudspeakers are placed along a wall and are separated by a distance of 4.00 m. They emit sound with a fre...

    Two in-phase loudspeakers are placed along a wall and are separated by a distance of 4.00 m. They emit sound with a frequency of 514 Hz. A person is standing away from the wall, in front of one of the loudspeakers. What is the closest distance from the wall the person can stand and hear constructive interference? The speed of sound in air is 343 m/s. Multiple choice: 1.64 m 1.15 m 0.344 m 0.729 m

  • Two small loudspeakers emit pure sinusoidal waves with frequency-independent amplitude that are in phase. a )...

    Two small loudspeakers emit pure sinusoidal waves with frequency-independent amplitude that are in phase. a ) At the frequencies 0.63 kHz, 1.91 kHz, and 3.19 kHz we have constructive interference at point P. b) At the frequencies 1.27 kHz, 2.55 kHz, and 3.82 kHz the sound at point P is very soft. c) At the frequencies 1.27 kHz, 2.55 kHz, and 3.82 kHz the sound at point P is loud. d) The intensity of the sound at point P does...

  • Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound...

    Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound with the same wavelength, and they are in phase (they emit peaks of the sound wave at the same time). The location labeled C is a location of constructive interference, and the location labeled D is a location of destructive interference. The distances from the loudspeakers to the locations are as indicated. (Picture may not be to scale!!) (a) What is the wavelength of...

  • Two speakers are separated by two meters in a plane. They are in-phase. They project 891...

    Two speakers are separated by two meters in a plane. They are in-phase. They project 891 Hz sound waves. The speed of sound is 343 m/s. Consider the point 5.0 m in front of one of the speakers, perpendicular to the plane of the speakers. At this point, is there maximum constructive interference, perfect destructive interference, or something in between?

  • The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is...

    The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate out of phase and are playing a 77.0 Hz tone. The speed of sound is 342 m/s. The listener at point (C) hears the first constructive interference at a distance 5.00 m as measured from speaker (A). What is the separation (d) between the two speakers?m

  • The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is...

    The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate out of phase and are playing a 71.0 Hz tone. The speed of sound is 340 m/s. The listener at point (C) hears the third constructive interference at a distance 4.50 m as measured from speaker (A). What is the separation (d) between the two speakers? A 5m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT