Question

A.) Two loudspeakers are separated by a distance of 6.2 m. A listener sits directly in...

A.) Two loudspeakers are separated by a distance of 6.2 m. A listener sits directly in front of one speaker at a distance of 6.4 m so that the two speakers and the listener form a right triangle. Find the lowest frequency for which the path difference from the speakers to the listener is an odd number of half-wavelengths. Assume the speed of sound is 340 m/s.

B.) Find the second lowest frequency for which the path difference from the speakers to the listener is an odd number of half-wavelengths.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A) Distance from the second speakerto the listener 6.4+6.2 8.910m 2- 8.910-6.4 2.510m The condition is given by 2 2, 2.510-4

Add a comment
Know the answer?
Add Answer to:
A.) Two loudspeakers are separated by a distance of 6.2 m. A listener sits directly in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, two loudspeakers, separated by a distance of d1 = 2.89 m, are in...

    In the figure, two loudspeakers, separated by a distance of d1 = 2.89 m, are in phase. Assume the amplitudes of the sound from the speakers are approximately the same at the position of a listener, who is d2 = 4.08 m directly in front of one of the speakers. Consider the audible range for normal hearing, 20 Hz to 20 kHz. (a) What is the lowest frequency that gives the minimum signal (destructive interference) at the listener's ear? (b)...

  • Two in-phase loudspeakers are placed along a wall and are separated by a distance of 6.00 m. They...

    Two in-phase loudspeakers are placed along a wall and are separated by a distance of 6.00 m. They emit sound (take vs = 343 m/s) with a frequency of 137.2 Hz. A person is standing away from the wall, in front of one of the loudspeakers. What is the closest distance x from the speaker the person can stand and hear a sound intensity maximum? 4. [5] Two in-phase loudspeakers are placed along a wall and are separated by a...

  • The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is...

    The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate out of phase and are playing a 71.0 Hz tone. The speed of sound is 340 m/s. The listener at point (C) hears the third constructive interference at a distance 4.50 m as measured from speaker (A). What is the separation (d) between the two speakers? A 5m

  • Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The...

    Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The speed of sound is 340 m/s. Assume the amplitude of the sound from each speaker is approximately the same at the position of a listener, who is 3.75 m directly in front of one of the speakers. a) (10pts) For what three lowest frequencies will there be a minimum signal (destructive interference)? b) (10pts) For what three lowest frequencies will there be a maximum...

  • The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is...

    The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate in phase and are playing a 67.0 Hz tone. The speed of sound is 343 m/s. The listener at point (C) hears the nearest no sound at a distance 6.50 m as measured from speaker (A). What is the separation (d) between the two speakers? general physics.rutgers.edu General Physics 203 Online Assignments Hz 10. The figure shows two loudspeakers (A)...

  • A listener is sitting between two loudspeakers at a distance of 4m from the left speaker....

    A listener is sitting between two loudspeakers at a distance of 4m from the left speaker. The speakers are 10m apart, and ach speaker is putting out sine waves with wavelengths of 1.0m, but one of them is 180 degree out of phase from the other. What will the listener hear?

  • Question 8 (15 Points) Two identical loudspeakers are placed side-by-side two meters apart. They emit sound...

    Question 8 (15 Points) Two identical loudspeakers are placed side-by-side two meters apart. They emit sound at 1800Hz into a room where the speed of sound is 340 m/s. (a) Calculate the path difference for sound traveling from each speaker to a point 4.0 m directly in front of one of the speakers. (5 points) (b) Calculate the number of wavelengths that would fit into this path difference. Round your result to one decimal place. (6 points) (c) Does this...

  • Two identical loudspeakers are placed on a wall 3.00 m apart. A listener stands 5.00 m...

    Two identical loudspeakers are placed on a wall 3.00 m apart. A listener stands 5.00 m from the wall directly in front of one of the speakers. A single oscillator is driving the speakers at a frequency of 300 Hz. (a) What is the phase difference in radians between the waves from the speakers when they reach the observer? (Your answer should be between 0 and 21.) rad (b) What is the frequency closest to 300 Hz to which the...

  • 10. The figure shows two loudspeakers (A) and (B), and a point (C) where a listener...

    10. The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate in phase and are playing a 65.0 Hz tone. The speed of sound is 343 m/s. The listener at point (C) hears the nearest no sound at a distance 6.00 m as measured from speaker (A). What is the separation (d) between the two speakers? m B d A C

  • The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is...

    The figure shows two loudspeakers (A) and (B), and a point (C) where a listener is positioned. The speakers vibrate out of phase and are playing a 77.0 Hz tone. The speed of sound is 342 m/s. The listener at point (C) hears the first constructive interference at a distance 5.00 m as measured from speaker (A). What is the separation (d) between the two speakers?m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT