Question

A cylindrically symmetric charge distribution has a volume charge density that depends on the radial position,...

A cylindrically symmetric charge distribution has a volume charge density that depends on the radial position, r, as follows: rho(r) = rho0(1-r/a) where rho0 is the charge density at the central axis and "a" is just a size constant.

What is the electric field at r = 2a? (For direction, “+” means radially outward and “-” means radially inward.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2a 2. 2

Add a comment
Know the answer?
Add Answer to:
A cylindrically symmetric charge distribution has a volume charge density that depends on the radial position,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The charge distribution described in this problem is cylindrically symmetric because it is symmetric under the...

    The charge distribution described in this problem is cylindrically symmetric because it is symmetric under the following three geometric transformations: a translation parallel to the rod's axis, a rotation by any angle about the rod's axis, and a reflection in any plane containing or perpendicular to the rod's axis. In other words, no noticeable or measurable change occurs if you shift the infinitely-long rod by any distance along its axis, or turn the rod by any angle about its axis,...

  • 4 A spherically symmetric charge distribution has the following radial dependence for the volume charge density...

    4 A spherically symmetric charge distribution has the following radial dependence for the volume charge density ρ: 0 if r R where γ is a constant a) What units must the constant γ have? b) Find the total charge contained in the sphere of radius R centered at the origin c) Use the integral form of Gauss's law to determine the electric field in the region r R. (Hint: if the charge distribution is spherically symmetric, what can you say...

  • (a) A solid sphere, made of an insulating material, has a volume charge density of p...

    (a) A solid sphere, made of an insulating material, has a volume charge density of p , where r is the radius from the center of the sphere, a is constant, and a >0. What is the electric field within the sphere as a function of the radius r? Note: The volume element dv for a spherical shell of radius r and thickness dr is equal to 4tr2dr. (Use the following as necessary: a, r, and co.) magnitude E direction...

  • A sphere of radius R has total charge Q. The volume charge density (C/m^{3}) within the...

    A sphere of radius R has total charge Q. The volume charge density (C/m^{3}) within the sphere is      \(\rho=\rho_{0}(1-(r^{2}/R^{2}))\)      This charge desity decreases quadratically from      \(\rho_{0}\)      b) Show that the electric field inside the sphere points radially outward with magnitude           c) Show that your results of part (b) has the expected value at r=R.

  • Only part f) please! 4 A spherically symmetric charge distribution has the following radial dependence for...

    Only part f) please! 4 A spherically symmetric charge distribution has the following radial dependence for the volume charge density ρ ρ(r) If r > R where y is a constant a) What units must the constant y have? b) Find the total charge contained in the sphere of radius R centered at the origin c) Use the integral form of Gauss's law to determine the electric field in the region r < R. Hint: if the charge distribution is...

  • 4. A spherically sym metric charge distribution has the following radial dependence for the volume charge...

    4. A spherically sym metric charge distribution has the following radial dependence for the volume charge density ρ 0 if r > R where γ is a constant a) What units must the constant y have? b) Find the total charge contained in the sphere of radius R centered at the origin. c) Use the integral form of Gauss's law to determine the electric field in the region r < R. (Hint: if the charge distribution is spherically symmetric, what...

  • A long non conducting cylinder has a charge density p=ar where a = 4.96 C/m^4 and...

    A long non conducting cylinder has a charge density p=ar where a = 4.96 C/m^4 and r is in meters. Concentric around it is a hollow This is part of the previous page. I need help with 26, 28, 29. 12 cm 11.7 em 16.7 cm Find the total electrie flux through a spbere centered at the point charge and having radius vacuum is 88S42 × 10-12C/N·m" What is the electric field at 2 cm from theRSa The value of...

  • An infinitely long cylindrical conductor with radius R has a uniform surface charge density ơ on...

    An infinitely long cylindrical conductor with radius R has a uniform surface charge density ơ on its surface. From symmetry, we know that the electric field is pointing radially outward: E-EO)r. where r is the distance to the central axis of the cylinder, and f is the unit vector pointing radially outward from the central axis of the cylinder. 3. (10 points) (10 points) (a) Apply Gauss's law to find E(r) (b) Show that at r-R+ δ with δ σ/a)....

  • Consider a very long, round, solid nonconductive cylinder of radius R with a volume charge density...

    Consider a very long, round, solid nonconductive cylinder of radius R with a volume charge density of rho = -Cr, centered on the z-axis. Where r is the distance from the z-axis, and C is a positive constant. a) What are the units for C? Use Gauss's Law to find the electric field everywhere in space in and around this charged rod, at b) r lessthanorequalto R and c) r > R. This cylinder is long enough that you can...

  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:...

    A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows: ρ(r)=ρ0(1−r/R) for r≤R ρ(r)=0 for r≥R where ρ0=3Q/πR3 is a positive constant. Part A Find the total charge contained in the charge distribution. Express your answer in terms of some or all of the variables r, R, Q, and appropriate constants. Part B Obtain an expression for the electric field in the region r≥R. Express your answer in terms of some or all of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT