Question

Problem 3. (1 point) Use the Laplace transform to solve the following initial value problem: y +9y = 0 y(0) = 3, y(0) = 5 a

Problem 5. (1 point) a. Find a particular solution to the nonhomogeneous differential equation y + 2y + 5y = 8tet. ур help

Problem 6. (1 point) This is an example of an Undamped Forced Oscillation where the phenomenon of Pure Resonance Occurs. Find

could someone explain this with helpful workspace?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(3) 19g =- 0 93,yloies 키 니 tag) L) s2 YIS) -S J) - J야9( S400 -00) 시 S2yLs) - 35 -5 +9 (SY9) -3) ) 시52 49s) YS) -3S -32 = 0

Sorry we are instructed to do only first problem

Add a comment
Know the answer?
Add Answer to:
could someone explain this with helpful workspace? Problem 3. (1 point) Use the Laplace transform to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y"...

    (1 point) Solve the following differential equation by variation of parameters. Fully evaluate all integrals. y" +9y sec(3x) a. Find the most general solution to the associated homogeneous differential equation. Use c1 and c2 in your answer to denote arbitrary constants, and enter them as ct and c2. help (formulas) b. Find a particular solution to the nonhomogeneous differential equation y" +9y sec(3x). yp elp (formulaS c. Find the most general solution to the original nonhomogeneous differential equation. Use c...

  • (1 point) a. Find a particular solution to the nonhomogeneous differential equation y" + 3y -...

    (1 point) a. Find a particular solution to the nonhomogeneous differential equation y" + 3y - 10y = ex. yp = help (formulas) b. Find the most general solution to the associated homogeneous differential equation. Use cy and c2 in your answer to denote arbitrary constants, and enter them as c1 and c2. Yh = help (formulas) c. Find the most general solution to the original nonhomogeneous differential equation. Use cy and C2 in your answer to denote arbitrary constants....

  • STRUGGLING PLEASE HELP (1 point) Use the Laplace transform to solve the following initial value problem:...

    STRUGGLING PLEASE HELP (1 point) Use the Laplace transform to solve the following initial value problem: y" – 2y + 10y = 0 y(0) = 0, y' (O) = 3 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = By completing the square in the denominator and inverting the transform, find yt) =

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y'...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 6y' - 16y = 0 y(0) = 3, y(0) = 1 First, using Y for the Laplace transform of y(t), i.e., Y = C{y(t)). find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, Y(S) = Y(s) = A. where a <b Now by...

  • (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y...

    (1 point) Use the Laplace transform to solve the following initial value problem: y" + 3y = 0 y(0) = -1, y(0) = 7 First, using Y for the Laplace transform of y(t), i.e.. Y = C{y(t)} find the equation you get by taking the Laplace transform of the differential equation = 0 Now solve for Y (8) and write the above answer in its partial fraction decomposition, Y(s) Y(8) = B b where a <b sta !! Now by...

  • (1 point) Use the Laplace transform to solve the following initial value problem: y! -8y +...

    (1 point) Use the Laplace transform to solve the following initial value problem: y! -8y + 20y = 0 y(O) = 0, y (0) = 2 First, using Y for the Laplace transform of y(t), i.e., Y = {y(0), find the equation you get by taking the Laplace transform of the differential equation 2/(s(2)-8s+20) =0 Now solve for Y(s) = 1/[(9-4) (2)+(2)^(2)) By completing the square in the denominator and inverting the transform, find y() = (4t)sint

  • (1 point) Use the Laplace transform to solve the following initial value problem: "7-0 (0)7, (0)-2...

    (1 point) Use the Laplace transform to solve the following initial value problem: "7-0 (0)7, (0)-2 First, using Y for the Laplace transform of ), .e.Y Cu)). find the equation you get by taking the Laplace transform of the differential equation Now solve for Y(s) and write the above answer in its partial fraction decomposition, y(s)-- + where a < b Now by inverting the transform, find y(t)

  • Please answer the blamnks. Thank you. (1 point) Use the Laplace transform to solve the following...

    Please answer the blamnks. Thank you. (1 point) Use the Laplace transform to solve the following initial value problem: y6y9y 0,with y(0) 1, y (0) = -4 First, using Y for the Laplace transform of y(t), i.e., Y = L{y(t)} find the equation you get by taking the Laplace transform of the differential equation =0 Now solve for Y(s) = and write the above answer in its partial fraction decomposition, A Y(s) (s+a} s+a Y(s) Now by inverting the transform,...

  • 1 point) Consider the initial value problem y" + 36y-cos(61), y(0)-6 (0)-8, a. Take the Laplace transform of both s...

    1 point) Consider the initial value problem y" + 36y-cos(61), y(0)-6 (0)-8, a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). help (formulas) b. Solv e your equation for Y (s) Y(s) = L { y(t)) = c. Take the inverse...

  • (1 point) Consider the initial value problem a. Take the Laplace transform of both sides of...

    (1 point) Consider the initial value problem a. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of v(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). help (formulas) (sh2+4)Y(s)-(8s+5) Solve your equation for Y(s) b. c. Take the inverse Laplace transform of both sides of the previous equation to solve for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT