Question

2. A small ball of mass m is tied to a string and set rotating with negligible friction in a vertical circle of radius R with earths gravity g acting. (a) What is the speed of the ball at the top of the circle so that the tension in the string vanishes there? (b) Given this, what is the speed of the ball at the bottom of the circle, and (c) what is the tension in the string at the bottom of the circle?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A small ball of mass m is tied to a string and set rotating with negligible...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 9 A small 2kg ball is tied to a massless string 2m long to form a pendulum that is then set swing...

    can someone show me how to solve these with steps 9 A small 2kg ball is tied to a massless string 2m long to form a pendulum that is then set swinging by releasing the ball from rest when the string makes an angle 30° with vertical. Neglecting all kinds of friction, what is the ball's speed when the string is vertical? What is the ball's speed when the string makes an angle 10° with vertical? 10. A 1000 kg...

  • A tennis ball connected to a string is spun around in a vertical, circular path at...

    A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.175 kg and moves at v = 5.22 m/s. The circular path has a radius of R = 1.14 m 1.What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2.What is the magnitude of the tension in the string when the ball is...

  • A tennis ball connected to a string is spun around in a vertical, circular path at...

    A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.153 kg and moves at v = 5.08 m/s. The circular path has a radius of R = 0.99 m 1)What is the magnitude of the tension in the string when the ball is at the bottom of the circle? 2)What is the magnitude of the tension in the string when the ball is...

  • A tennis ball connected to a string is spun around in a vertical, circular path at...

    A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.178 kg and moves at v = 4.75 m/s. The circular path has a radius of R = 0.91 m 1) What is the magnitude of the tension in the string when the ball is at the bottom of the circle? N Submit + 2) What is the magnitude of the tension in the...

  • circling ball

    A ball of mass,m, is attached to a string of length,l . It is being swung in a vertical circle with enough speed so that the string remains taut throughout the ball's motion.Assume that the ball travels freely in this vertical circle with negligible loss of total mechanical energy. At the top and bottom of the vertical circle, theball's speeds are vt and vb, and the corresponding tensions in the string are Tt and Tb. Tt and Tb have magnitudes...

  • A 900 g ball moves in a vertical circle on a 1.07 m -long string. If...

    A 900 g ball moves in a vertical circle on a 1.07 m -long string. If the speed at the top is 4.10 m/s , then the speed at the bottom will be 7.67 m/s . A) What is the ball's weight? B) What is the tension in the string when the ball is at the top? C) What is the tension in the string when the ball is at the bottom?

  • A small ball of mass ? is attached to the bottom end a light string of...

    A small ball of mass ? is attached to the bottom end a light string of length ?, while the top of the string is fixed to the ceiling. If the ball is moving in a horizontal circle of radius ?, derive an expression for the angular speed ? of the ball in terms of only ?, ?, ? and ?. Such a system is called a conical pendulum.

  • Object rotating on a string of changing length. A small mass m attached to the end...

    Object rotating on a string of changing length. A small mass m attached to the end of a string revolves in a circle on a friction-less tabletop. The other end of the string passes through a hole in the table. Initially the mass revolves with a speed 2.4 m/s in a circle of radius 0.80 m. The string is then pulled slowly through the hole so that the radius i reduced to 0.48 m. The final speed is 4.0 m/s...

  • A ball is tied to the end of a cable of negligible mass. The ball is...

    A ball is tied to the end of a cable of negligible mass. The ball is spun in a circle with a radius 2.00 m making 7.00 revolutions every 10.0 seconds. What is the magnitude of the acceleration of the ball?

  • A ball at the end of a string moves in a vertical circle with constant mechanical...

    A ball at the end of a string moves in a vertical circle with constant mechanical energy E. What is the difference between the tension at the bottom of the circle and the tension at the top? (Let m be the mass of the ball and g the acceleration due to gravity.) TB-Tr= eBook Submit Answer Save Progress

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT