Question

There is a classic amusement park ride where people stand with their backs pressed against the side of a large cylinder that

0 0
Add a comment Improve this question Transcribed image text
Answer #1

从 im v R g-8 2.6 6.03 s

Add a comment
Know the answer?
Add Answer to:
There is a classic amusement park ride where people stand with their backs pressed against the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Constants | Periodic Table Part A In an old-fashioned amusement park ride, passengers stand inside a...

    Constants | Periodic Table Part A In an old-fashioned amusement park ride, passengers stand inside a 5.1-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.64 to 1.0 and a kinetic coefficient...

  • The Gravitron is an amusement park ride in which riders stand against the inner wall of...

    The Gravitron is an amusement park ride in which riders stand against the inner wall of a large spinning steel cylinder. At some point, the floor of the Graviton drops out, instilling the fear in riders that they will fall a great height. However, the spinning motion of the Gravitron allows them to remain safely inside the ride. Most Gravitrons feature vertical walls, but the example shown in the figure has tapered walls of 25.7o. According to knowledgeable sources, the...

  • An amusement park ride has a vertical cylinder with an inner radius of 4 m, which...

    An amusement park ride has a vertical cylinder with an inner radius of 4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.91. What minimum angular velocity in radians/second...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away. If the coefficient of static friction between the person and the wall is 0.563 and the radius of the cylinder is 8.87 m, what is the minimum tangential speed necessary to keep a person from falling? ____ m/s What is the maximum period of rotation to keep a...

  • Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of...

    Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of a cylindrical chamber, and when the cylindar spins and the floor drops out, the riders stick to the sides. Assume the Gravitron in the figure shown has a radius of 2.3 m and the coefficient of static friction between the persons' clothes and the walls is mu_s = 0.65. How fast should the Gravitron spin to ensure that an 85 kg person will stick...

  • On the ride "Spindletop" at an amusement Park, people stood against the inner wall of a...

    On the ride "Spindletop" at an amusement Park, people stood against the inner wall of a hollow vertical cylinder with radius 2.5 m. The cylinder begins to turn, the rider, wall, and the floor moves in unison. When the cylinder reaches a constant speed of 7.2 m/s, the floor on which the rider is drops off. The rider does not fall with it but instead is pinned against the wall. (a) What is the minimum coefficient of static friction? (b)...

  • 11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder,...

    11. “The Rotor”. The amusement park ride known as “the rotor”, essentially a large hollow cylinder, rotates rapidly about a central axis. Riders stand on the floor up against the wall of this ride before it begins to rotate. Once the ride starts, all riders, the wall, and floor begin to rotate rapidly and undergo uniform circular motion. When the rotation speeds reaches a certain value, the floors fall away and the riders are held pinned against the wall where...

  • 001 (part 1 of 2) 10.0 points An amusement park ride consists of a large vertical...

    001 (part 1 of 2) 10.0 points An amusement park ride consists of a large vertical cylinder that spins about enough that any person inside is held up against the wall when the floor drops away its axis fast 6.87 m What is the minimum angular velocity wmin needed to keep the person from slipping downward? The acceleration due to gravity is 9.8 m/s2, the coefficient of static friction be- tween the person and the wall is 0.77, and the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s 2 . Given g = 9.8 m/s 2 , the coefficient µ = 0.564 of static friction between a person and the wall, and the radius of the cylinder R = 4.9 m. For simplicity, neglect the...

  • An amusement park ride consists of a large vertical cylinder that spins about its axis fast...

    An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that a person inside is stuck to the wall and does not slide down when the floor drops away. The acceleration of gravity is 9.8 m/s2. Given g = 9.8 m/s2, the coefficient μ = 0.569 of static friction between a person and the wall, and the radius of the cylinder R = 5.4 m. For simplicity, neglect the person’s depth and assume...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT