Question

A gasoline engine has a compression ratio of 8.00 and uses a gas for which y = 1.40. (a) What is the efficiency of the engine
0 0
Add a comment Improve this question Transcribed image text
Answer #1

o As we know, efficiency of otto cycle- = |- - where ny = compression ratio n = 0.5647 an = 56.47% - 6 fuel wasted = f - Nach

Add a comment
Know the answer?
Add Answer to:
A gasoline engine has a compression ratio of 8.00 and uses a gas for which y...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. -/2 points SerPSE10 21.5.P.018. B My A gasoline engine has a compression ratio of 9.00...

    4. -/2 points SerPSE10 21.5.P.018. B My A gasoline engine has a compression ratio of 9.00 and uses a gas for which y = 1.40. (a) What is the efficiency of the engine if it operates in an idealized Otto cycle? (b) If the actual efficiency is 17.0%, what fraction of the fuel is wasted as a result of friction and energy losses by heat that could by avoided in a reversible engine? (Assume complete combustion of the air-fuel mixture.)...

  • A gasoline engine operates on the air standard Otto cycle. The air intake to the engine...

    A gasoline engine operates on the air standard Otto cycle. The air intake to the engine is at 300K and 95kPa (State 1). The air is compressed in the engine to an unknown pressure. Heat is then added during combustion at an amount of 1100 kJ/kg. At the end of the heat addition process, the temperature reaches 2200K. Compute the following: (a) the temperature at the end of the compression process, (b) the volumetric compression ratio of this engine, (c)...

  • An Otto engine is operating with natural gas which can be approximated as an ideal gas....

    An Otto engine is operating with natural gas which can be approximated as an ideal gas. Assuming the engine is at standard condition (25°C, 1 atm) before the compression process. Also, temperature of the Otto cycle after the combustion process is 1500 K. (a) Assuming compression ratio of the Otto engine as 8, 9 and 10, determine the corresponding temperatures of the natural gas-air mixture (natural gas with 100% excess air) after the compression. (b) Determine the thermal energy release...

  • Question 2 A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of...

    Question 2 A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (Vmin) of the engine is 420 cm3 . At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: A. Brake power B. The brake mean effective pressure C....

  • Question 6 A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of...

    Question 6 A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (Vmin) of the engine is 420 cm3. At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: a. Brake power b. The brake mean effective pressure Friction losses...

  • A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder...

    A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (Vmin) of the engine is 420 cm3 . At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: a) Brake power b) The brake mean effective pressure c) Friction losses...

  • A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder...

    A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (Vmin) of the engine is 420 cmº. At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: (a) Brake power (b) The brake mean effective pressure, (c) Friction losses (d)...

  • A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder...

    A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (Vmin) of the engine is 420 cm². At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: (a) Brake power (2 mark) (b) The brake mean effective pressure, (1 mark)...

  • A four-stroke 2.0 Litre compression ignition engine operates on a Diesel cycle with a compression ratio...

    A four-stroke 2.0 Litre compression ignition engine operates on a Diesel cycle with a compression ratio of 20 and a cut-off ratio of 1.8. Air is at 30°C and 100 kPa at the beginning of the compression process. It may be assumed that for the air, the specific heat, Cp and gas constant, R are 1.005 and 0.287 kJ/kg.K, respectively. Calculate: the temperature (K) of the air at the end of the following processes: (i) (a) compression (ii) combustion, (ii...

  • A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder...

    A gasoline engine of 6 cylinders operates on the four-stroke cycle. The bore of each cylinder is 80 mm and the stroke is 100 mm. The indicator diagram shows an indicated mean effective pressure of 7.3 bars. The clearance volume (V min) of the engine is 420 cm? At the speed of 4100 rpm, the fuel consumption is 19.8 kg/hr and the torque developed is 160 Nm. Calculate: a) Brake power (2 mark) b) The brake mean effective pressure, (1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT