Question

Question A2: Coherent states of the harmonic oscillator Consider a one-dimensional harmonic oscillator with the Hamiltonian 1

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Question A2: Coherent states of the harmonic oscillator Consider a one-dimensional harmonic oscillator with the Hamiltonian...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A Wave Packet in Simple Harmonic Motion: Coherent State of Simple Harmonic Oscillator 2 Background: Without...

    A Wave Packet in Simple Harmonic Motion: Coherent State of Simple Harmonic Oscillator 2 Background: Without the general tools for solving the Time Dependent Schrödinger Equation DSwhich we will lear in ciect ssoltions io the TDSEi are diflieli but not impossible to find. In this problem, you will consider one such solution, the "Coherent States" of a Simple Harmonic Oscillator (SHO) of frequency w. We will use the solution to this problem to illustrate the general principles of the Correspondence...

  • 1. Quantum harmonic oscillator (a) Derive formula for standard deviation of position measurement ...

    1. Quantum harmonic oscillator (a) Derive formula for standard deviation of position measurement on a particle prepared in the ground state of harmonic oscillator. The formula will depend on h, m andw (b) Estimate order of magnitude of the standard deviation in (a) for the LIGO mirror of mass 10 kg and w 1 Hz. (c) A coherent state lo) is defined to be the eigenstate of the lowering operator with eigenvalue a, i.e. à lo)a) Write la) as where...

  • 4. (20 points). Consider a quantum harmonic oscillator with characteristic frequency w. The syste...

    4. (20 points). Consider a quantum harmonic oscillator with characteristic frequency w. The system is in thermal equilibrium at temperature T. The oscillator is described by the following density matrix: A exp kaT where H is the usual harmonic oscillator Hamiltonian and kB is Boltzmann's constant. Working in the Fock (photon number) basis: a. Find the diagonal elements of ρ b. Determine the normalization constant A. c. Calculate the expectation value of energy (E 4. (20 points). Consider a quantum...

  • Consider the dimensionless harmonic oscillator Hamiltonian, (where m = h̄ = 1). Consider the orthogonal wave...

    Consider the dimensionless harmonic oscillator Hamiltonian, (where m = h̄ = 1). Consider the orthogonal wave functions and , which are eigenfunctions of H with eigenvalues 1/2 and 5/2, respectively. with p=_ïda 2 2 We were unable to transcribe this imageY;(r) = (1-2x2)e-r2/2 (a) Let фо(x-AgVo(x) and φ2(x) = A2V2(x) and suppose that φ。(x) and φ2(x) are normalized. Find the constants Ao and A2. (b) Suppose that, at timet0, the state of the oscillator is given by Find the constant...

  • 6 The Fermionic Oscillator Suppose that we constructed a harmonic oscillator Hamiltonian H in terms of...

    6 The Fermionic Oscillator Suppose that we constructed a harmonic oscillator Hamiltonian H in terms of raising and lowering operators a+,a in the usual way, such that but now whereaa obey the anticommutation relationn (Be careful! The a+,a are operators, rather than numbers.) (a) Suppose I give you a wavefunction that solves the time-independent Schrödinger equation, i.e. such that HUn-EUn-hw (n + ) ψη. Is a+Un also a solution to the time-independent Schrödinger equation If so, what is its energy...

  • 4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D:...

    4. (30 points) Harmonic oscillator with perturbation Recall the Hamiltonian of an harmonic oscillator in 1D: p21 ÃO = + mwf?, where m is the mass of the particle and w is the angular frequency. Now, let us perturb the oscillator with a quadratic potential. The perturbation is given by Î' = zgmw?h?, where g is a dimensionless constant and g <1. (a) Write down the eigen-energies of the unperturbed Hamiltonian. (b) In Lecture 3, we introduced the lowering (or...

  • 3. The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an...

    3. The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Consider an electron trapped by a one-dimensional harmonic potential V(x)=-5 mo?x” (where m is the electron mass, o is a constant angular frequency). In this case, the Schrödinger equation takes the following form, **...

  • The lowest energy wavefunction of the quantum harmonic oscillator has the form (c) Determine σ an...

    The lowest energy wavefunction of the quantum harmonic oscillator has the form (c) Determine σ and Eo (the energy of this lowest-energy wavefunction) by using the time-independent Schrödinger equation (H/Ho(x)- E/Ho(x) In Lecture 3, we found that the solution for a classical harmonic oscillator displaced from equilibrium by an amount o and released at rest was x(t)cos(wt) (d) Classically, what is the momentum of this harmonic oscillator as a function of time? (e) Show that 〈z) (expectation value of x)...

  • 2. Consider a one-dimensional simple harmonic oscillator. Do the following algebraically. 2. Consider a one -dimensional...

    2. Consider a one-dimensional simple harmonic oscillator. Do the following algebraically. 2. Consider a one -dimensional simple harmonic oscillator. Do the following algebraically. a) Construct a linear superposition of I0) and |1) by choosing appropriate phases, such that (x) is as large as possible. i) Suppose the oscillator is in the state la) att 0. Find la) and x) ii) Evaluate the expectation value(x) at t 〉 0. ii Evaluate (A x)2) att > 0. b) Answer the same questions...

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT