Question

Question 27 a k = 50 N/m hellllile osno 0.5 kg Submit x= -0.5 m X = 0.0 m X = 0.5 m A block of mass 0.5 kg on a horizontal su

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans: B

Time period in case of spring mass system is given by,

T = 20

Where k is the spring constant and m is mass of the block.

As it's evident, time period depends only on mass of the block and the spring constant. Increasing mass increases the time period .

A is wrong because time period does not depend upon amplitude.

C is wrong because increasing k will decrease the time period.

D us wrong because for vertical shm of spring mass system the time period has the same expression so it does not matter whether the system is vertical or horizontal. Time period will be same for both.

Add a comment
Know the answer?
Add Answer to:
Question 27 a k = 50 N/m hellllile osno 0.5 kg Submit x= -0.5 m X...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • co200.000 10.5 A block of mass 0.5 kg on a horizontal surface is attached to a...

    co200.000 10.5 A block of mass 0.5 kg on a horizontal surface is attached to a horizontal spring of negligible mass and spring constant 50 N/m. The other end of the spring is attached to a wall, and there is negligible friction between the block and the horizontal surface. When the spring is unstretched, the block is located at x = Om. The block is then pulled to x = 0.3m and released from rest so that the block-spring system...

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below

    A block of mass 1.8 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. (a) A constant friction force of 3.4 N retards the block's motion from the moment it is released. How much is the spring compressed when the speed of the block is a maximum. (b) What is the maximum speed?

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A block of mass m 2.00 kg is attached to a spring of force constant k-...

    A block of mass m 2.00 kg is attached to a spring of force constant k- 525 N/m as shown in the figure below. The block is pulled to a position x 4.00 cm to the right of equilibrium and released from rest. (o) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless m/s (b) Find the speed the block has as it passes through equilibrium (for the first time) if the...

  • A block of mass 3.40 kg is placed against a horizontal spring of constant k =...

    A block of mass 3.40 kg is placed against a horizontal spring of constant k = 865 N/m and pushed so the spring compresses by 0.0600 m. (a) What is the elastic potential energy of the block-spring system (in J)? (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring.

  • Question 3. [12 marks] in the diagram, two blocks (m - 4 kg and m 10...

    Question 3. [12 marks] in the diagram, two blocks (m - 4 kg and m 10 kg) are a an inextensible cord of negligible mass that passes Block m, sits on a horizontal, rough surface with μ.-0.300 and :0.5 to an ideal spring (k 40 N/m) that is initially stretched relative initial tension in the spring 16 N. The system is then released from rest. Deternm ttached by over an ideal (massless, frictionless) pulley to its resting length, so that...

  • 495 N/m as shown in the figure below. The block is pulled to a position -...

    495 N/m as shown in the figure below. The block is pulled to a position - 4.40 cm to the right of equilibrium A block of mass m = 2.00 kg is attached to a spring of force constant k and released from rest wwwww x= 0 (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictione How much energy is stored in the spring when it is at equilibrium? m/s (b)...

  • A block of mass m = 1.07 kg is attached to a spring with force constant...

    A block of mass m = 1.07 kg is attached to a spring with force constant 134.0 N/m. The block is free to move on a frictionless, horizontal surface as shown in the figure. The block is released from rest after the spring is stretched a distance A = 0.15 m to the right. What is the potential energy of the spring/block system 0.28 s after releasing the block?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT