Question

2. A pump delivers 4 m3/min of water from 110 kPa to 350 kPa. Both pipes gages are on the same level. The inlet and outlet p
0 0
Add a comment Improve this question Transcribed image text
Answer #1

(B flowrate - 4 mmis - 0.0666 m/sec P. P2 - lokPa = 110x103 Pa = 350kPa = 350 x103 Pa Di = 16cm = 16 x 162m D2 = 13cm = 13 xSolution:

Now, substituting all value in egn ③ we get 110 - 9:81 0997 + (3.312,2 2x9.81 the = 350 x103 + (5.017)? 9.810997 2x9.81 11.24

Add a comment
Know the answer?
Add Answer to:
2. A pump delivers 4 m3/min of water from 110 kPa to 350 kPa. Both pipe's...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7.14 The pump in Fig. 7.20 delivers water from the lower to the upper reservoir at the rate of 0.057 m3/s. The energy loss between the suction pipe inlet and the pump is 1.83 m and that between t...

    7.14 The pump in Fig. 7.20 delivers water from the lower to the upper reservoir at the rate of 0.057 m3/s. The energy loss between the suction pipe inlet and the pump is 1.83 m and that between the pump outlet and the upper reservoir is 3.66 m. Both pipes are 6-in Schedule 40 steel pipe. Calculate (a) the pressure at the pump inlet, (b) the pressure at the pump outlet, (c) the total head on the pump, and (d)...

  • A pump increases the water pressure from 100 kPa at the inlet to 900 kPa at...

    A pump increases the water pressure from 100 kPa at the inlet to 900 kPa at the outlet. Water enters this pump at 15 degree C through a 1-cm-diameter opening and exits through a 1.5-cm-diameter opening. Determine the velocity of the water at the inlet and outlet when the mass flow rate through the pump is 0.5 kg/s. Will these velocities change significantly if the inlet temperature is raised to 40 degree C?

  • 1. A pump steadily delivers 13.7 kg/s of water at the conditions given below. Calculate the...

    1. A pump steadily delivers 13.7 kg/s of water at the conditions given below. Calculate the pump power (hp). There is no heat transfer from the pump to the surroundings (i.e., adiabatic conditions). Pump Inlet Temperature = 20oC Pump Inlet Pressure = 182 kPa Pump Inlet Diameter = 11.1 cm Pump Inlet Elevation = 20 m Pump Exit Temperature = 20oC Pump Exit Pressure = 601 kPa Pump Exit Diameter = 7.8 cm Pump Exit Elevation = 20 m Answer...

  • A centrifugal pump is pumping water at a rate of 35.55 gal/min. The pressures at the...

    A centrifugal pump is pumping water at a rate of 35.55 gal/min. The pressures at the inlet, and outlet of the pumps are -2.26 psig and 7.715 psig respectively. The outlet pipe is placed 10 inches higher than the inlet pipe. The inlet and outlet diameters of the pipe are 1.85 in and 1.6 in respectively and the torque produced by the pump rotating at 1593 rpm is 3.172 ft.Ibf. Calculate the following in SI units: a) Total head b)...

  • A centrifugal pump operating under steady flow conditions delivers 2,270 kg/min of water from an initial...

    A centrifugal pump operating under steady flow conditions delivers 2,270 kg/min of water from an initial pressure of 82,740 Pa to a final pressure of 275,800 Pa. The diameter of the inlet pipe to the pump is 15.24 cm and the diameter of the discharge pipe is 10.16 cm. What is the work?

  • Question 18 (10 April 2020) 51.5 kW 12 cm Pump An oil pump is drawing 51.5...

    Question 18 (10 April 2020) 51.5 kW 12 cm Pump An oil pump is drawing 51.5 kW of electric power while pumping oil with p= 860 kg/m3 at a rate of 0.23 m3/s. The inlet and outlet diameters of the piper are 8 cm and 12 cm, respectively. If the pressure rise of oil in the pump is measured to be 500 kPa and the motor efficiency is 87.5 percent, determine the mechanical efficiency of the pump. Motor 8 cm...

  • QUESTION 5 A pump steadily delivers 17.2 kg/s of water at the conditions given below. Calculate...

    QUESTION 5 A pump steadily delivers 17.2 kg/s of water at the conditions given below. Calculate the pump power (kW). There is no heat transfer from the pump to the surroundings (i.e., adiabatic conditions). Pump Inlet Temperature = 20°C Pump Inlet Pressure - 192 kPa Pump Inlet Diameter = 13.3 cm Pump Inlet Elevation = 22 m Pump Exit Temperature = 20°C Pump Exit Pressure - 419 kPa Pump Exit Diameter = 3.9 cm Pump Exit Elevation = 41.4 m...

  • lunzontal pipe and pump system in the following figure discharges 0.01583 m3/s. The gage pressure iust...

    lunzontal pipe and pump system in the following figure discharges 0.01583 m3/s. The gage pressure iust before the pressure is 400 The m/s2 losses between 20°C water at 57 m3/h 0 kPa and just after the pump the gage a. The pump inlet diameter is 9 cm and the outlet diameter is 3 em. Let g-9.81 pump is 12 o Pwater9 kg/m, Hwate0.001002 kgm-s) and Pat the two pressure points and the pump. But consider frictional losses at the 9-cm...

  • (5 pts) A pump is pumping water from a lake to the top of a mountain...

    (5 pts) A pump is pumping water from a lake to the top of a mountain through a constant- diameter pipe. Water exits the pipe at a volumetric flow rate of 0.04 m/s. The vertical distance between the lake surface and the pipe exit at the top of the mountain is 100 m. The diameter of the pipe is 10 cm. All mechanical energy losses are negligible and the flow is steady and incompressible. (Water density-I g/cm, ?-I.) Determine a)...

  • THERMO Question 1 A pump steadily delivers 13.7 kg/s of water at the conditions given below....

    THERMO Question 1 A pump steadily delivers 13.7 kg/s of water at the conditions given below. Calculate the pump power (hp). There is no heat transfer from the pump to the surroundings (i.e., adiabatic conditions). Pump Inlet Temperature = 20oC Pump Inlet Pressure = 170 kPa Pump Inlet Diameter = 11.4 cm Pump Inlet Elevation = 20 m Pump Exit Temperature = 20oC Pump Exit Pressure = 581 kPa Pump Exit Diameter = 5 cm Pump Exit Elevation = 20...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT