Question

BONUS QUESTION: Would you prefer an alternative controller with a stronger D-component, specifically, H(s)kp(l + 2s), if your
Figure 4: Template for the root locus in Problem 2A. Mark the open-loop poles (x) and zeros o and the asymptote centroid ơA-T
Figure 5: Template for the root locus in Problem 2C. Mark the open-loop poles (x) and zeros o and the asymptote centroid ơA-T
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Add a comment
Know the answer?
Add Answer to:
BONUS QUESTION: Would you prefer an alternative controller with a stronger D-component, specifically, H(s)kp(l + 2s),...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • Theroot-locus design method (d) Gos)H(s)2) 5.5 Complex poles and zeros. For the systems with an open-loop transfer function given below, sketch the root locus plot. Find the asymptotes and their angle...

    Theroot-locus design method (d) Gos)H(s)2) 5.5 Complex poles and zeros. For the systems with an open-loop transfer function given below, sketch the root locus plot. Find the asymptotes and their angles. the break-away or break-in points, the angle of arrival or departure for the complex poles and zeros, respectively, and the range of k for closed-loop stability 5 10ん k(s+21 (d) Gos)H(s)2) 5.5 Complex poles and zeros. For the systems with an open-loop transfer function given below, sketch the root...

  • 2. Consider the closed-loop system shown below Here Kp represents the gain of a proportional controller, and the proces...

    2. Consider the closed-loop system shown below Here Kp represents the gain of a proportional controller, and the process transfer function is given by . (a) Sketch the locus of the closed-loop poles as the proportional gain, Kp, varies from 0 to ∞. Be sure to clearly mark poles, zeros, asymptotes, angles of arrival/departure, break-in/away points, and real axis portion of the locus. (b) Using Routh's array, determine the range of the proportional gain, Kp, for which the closed-loop system...

  • Q3. Consider the feedback system in Figure 3. In the case when 2L G(s) Figure 3:...

    Q3. Consider the feedback system in Figure 3. In the case when 2L G(s) Figure 3: Block diagranm G(s) and when k is positive: (a) Sketch the root locus of the closed loop system (10) To assist in this (to indicate on root locus diagram) ) Compute the open loop poles and zeros (i) ealeulate the portion of the locus lying on the real axis; (iii) calculate the angles of asymptotes make with the real axis arad also the value...

  • A second-order process is described by its transfer function G(s) = (s+1)(843) and a PI controlle...

    A second-order process is described by its transfer function G(s) = (s+1)(843) and a PI controller by Consider feedback control with unit feedback gain as shown in Figure 1 A disturbance D(s) exists, and to achieve zero steady-state error, a small integral component is applied. Technical limitations restrict the controller gain kp to values of 0.2 or less. The goal is to examine the influence of the controller parameter k on the dynamic response. D(s) Controller Process X(s) Y(s) Figure...

  • Consider proportional feedback control as shown below. r(t) For each G(s) in the following problems A....

    Consider proportional feedback control as shown below. r(t) For each G(s) in the following problems A. Sketch the root locus. Clearly show the open-loop poles and zeros, and the high-gain asymptotes on your sketch. Calculate the centroid to assure that the high gain asymptotes are accurate. B. If your sketch reveals any break-in or break-away points, calculate those location C. Does your sketch reveal a jo- crossing? If so, stability may be an issue. D. A damping ratio of 7-...

  • 1. Given the open-loop transfer function G(s)h(s) find the asymptotes, (b) find the breakaway points, if...

    1. Given the open-loop transfer function G(s)h(s) find the asymptotes, (b) find the breakaway points, if any, (c) find the range of K for stability and also the ju-axis crossing points, and (d) sketch the root locus. (20 points) K/Ks+1)(s+2)(s+3)(s+4)) where 0 s K < 00, (a) K/[s(s+3)(s2+2s+2)] where o s K < o, (a) locate the For the open-loop transfer function G(s)H(s) asymptotes, (b) find the breakaway points, if any, (c) find the jw-axis crossing points and the gain...

  • PID controller: KG (5) - K(s’+1.55 +0.5) Plant: G (s)=- 1 (20s +1)(10s +1)(0.5s +1) For...

    PID controller: KG (5) - K(s’+1.55 +0.5) Plant: G (s)=- 1 (20s +1)(10s +1)(0.5s +1) For this control system, do the following tasks. Advice: Before you start, it is advised that you convert G,(s) to a standard form so that the leading coefficients of the denominator polynomials become 1 (without altering the overall transfer function). (1) Plot the root locus for 0 <K<using a computer tool, e.g., Matlab tools such as rlocus(), rltool() or any appropriate computer tools. Also, read...

  • these are useful formjlas to solve this problem please show all work! thank you 2.) Design...

    these are useful formjlas to solve this problem please show all work! thank you 2.) Design compensator for zero steady-state error with 10% overshoot and 0.4s of Peak time for the open loop transfer function G specified below. Sketch the comparison between uncompensated and compensated responses. Also compare their root locus. Clearly mention the improvements achieved after compensation. (50 points = 10 pts for analyzing uncompensated system+5 pts for identifying controller type+25 pts for controller design+5 pts for response comparison+5...

  • Please solve part b and c and d !! Consider the closed loop system shown in...

    Please solve part b and c and d !! Consider the closed loop system shown in Figure 4. The root locus of that system is shown in Figure 5 (s+40s+8) R(s) Y(s) Figure 4 System block diagram of Problem 4 a) On the root locus plot, sketch the region of possible roots of the dominant closed-loop poles such that the system response to a unit step has the following time domain specifications. [5] i. Damping ratio, 20.76 ii. Natural frequency,....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT