Question

Consider double slit experiment with two slits are separated by d=0,715 mm


Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits.


 a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe? 

 b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light?

 c) Now consider double slit diffraction and find how many interference bright fringes are inside the diffraction central bright fringe?

2 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider double slit experiment with two slits are separated by d=0,715 mm
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...

    Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 7 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 21.5 mm...

  • A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The...

    A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The experiment uses red light with a wavelength of 700 nm and projects the interference pattern onto a screen 5.0 m away from the slits. (a) What is the distance between two nearby bright fringes on the screen? (b) What is the distance between two nearby dark fringes on the screen? Assume these fringes are all near θ = 0. A Young's double-slit interference experiment...

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits...

    In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits are 2.80 m from the screen. Each slit has a width of 1.20 x 10-6 m. a) An interference pattern is formed when light with a wavelength of 450 nm is shined on the slits. How far (in meters) from the center of the interference pattern on the screen do the third order (m = 3) bright fringes occur? (1.5 pts) b) If a...

  • 1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of...

    1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 576 nm and the interference pattern observed on a screen 3.50 m from the slits. What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? 1(B) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102...

  • A double-slit interference experiment is performed with two very narrow slits separated by 0.10 mm. The...

    A double-slit interference experiment is performed with two very narrow slits separated by 0.10 mm. The experiment uses red light with a wavelength of 680 nm and projects the interference pattern onto a screen 6.0 m away from the slits (a) What Is the dlstance between two nearby brlght fringes on the screen? (b) What is the distance between two nearby dark fringes on the screen? Assume these fringes are all near0

  • In a double-slit experiment the distance between slits is 5.8 mm and the slits are 2.0...

    In a double-slit experiment the distance between slits is 5.8 mm and the slits are 2.0 m from the screen. Two interference patterns can be seen on the screen: one due to light with wavelength 490 nm, and the other due to light with wavelength 565 nm. What is the separation on the screen between the third-order (m = 3) bright fringes of the two interference patterns? ________________m

  • Consider a Young’s double-slit experiment. The slits are separated by 1.2 mm, and the monochromatic light...

    Consider a Young’s double-slit experiment. The slits are separated by 1.2 mm, and the monochromatic light has a wavelength of 600 nm. The angular position of the first-order bright (maxima) fringe is 0.054 degrees 0.018 degrees 0.029 degrees 0.035 degrees

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.144 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.144 mm is illuminated by light having a wavelength of 590 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? um (b) What is the difference in path lengths from the two slits to the location of...

  • In a Young's double-slit experiment, a set of parallel slits with a separation of 0.134 mm...

    In a Young's double-slit experiment, a set of parallel slits with a separation of 0.134 mm is illuminated by light having a wavelength of 600 nm and the interference pattern observed on a screen 3.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen? μm (b) What is the difference in path lengths from the two slits to the location of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT