Question

Consider an imaginary method to generate a supersonic flow in a two-step process of heating and cooling. Heat is first added to air at a low Mach number, increasing the Mach number until the flow is thermally choked at M = 1. Heat is then removed from the air, which further increases the Mach number (this is the imaginary part, that you were able to jump over M = 1 to the supersonic branch). Air at a pressure of 100 kPa and temperature of 293 K flows steadily in a frictionless pipe with constant area of 0.1 m2, with an inlet Mach number of 0.25. Calculate:

(a) The heat addition rate (J=s) required to reach M = 1

(b) The heat extraction rate (J=s) required to go from M = 1 to M = 1:5.

3. Consider an imaginary method to generate a supersonic flow in a two-step process of heating and cooling. Heat is first add

0 0
Add a comment Improve this question Transcribed image text
Answer #1

na = Heat added + air Album LLLLLLLL LUNCU Annnnnnnnnnnnnnnnny Exit Entry M2=1 My = 0.25 pressure (A)=100 kPa .fricffonless pNow, ima iu RT, i m m = 10088.578 0.2874293 [m= 10.2 kg/ (GPT. + ) = wis (CPTz tuz) test -03 M21 ve 3 V2 20 = SORT (V2=343.11k, = - 1 = -c = RT M2 = 15= g Vs = 115C =154J VRT UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU V2 = 115*17.4x2877 293 TV2 = 514.67 usi

Add a comment
Know the answer?
Add Answer to:
Consider an imaginary method to generate a supersonic flow in a two-step process of heating and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • M 3. Consider a scenario in which supersonic flow is expanded and turned by 150 through...

    M 3. Consider a scenario in which supersonic flow is expanded and turned by 150 through a Prandtl-Meyer expansion wave/fan. Consider the gas to be calorically perfect Air with upstream properties as follows: M1 = 4, P = 20 kPa, T = 250 K. Find: 0-150 M2 (a) freestream Prandtl-Meyer function, Vi. (b) downstream Mach number, M2. (c) downstream static pressure, P2. (d) downstream static temperature, T2.

  • please solve this Consider the flow of air in a long frictional pipe under isothermal conditions....

    please solve this Consider the flow of air in a long frictional pipe under isothermal conditions. At the pipe inlet 10 N/m2. respectively, and the velocity the static temperature and pressure are 318 K and 1 is 100 m/s. The pipe diameter is 0.25 m and the friction coefficient is 0.05. For air, take 7 1.4. Analyze the problem as the isothermal Fanno flow and calculate iThe length of pipe to choke the flow. The limiting velocity. The limiting pressure....

  • Poblem Comergini sentropie regim (no shock waves) Consider isentropic flow through a converging-diverging nozzle. The exit...

    Poblem Comergini sentropie regim (no shock waves) Consider isentropic flow through a converging-diverging nozzle. The exit area of the nozzle is , and the throat area of the nozzle is . The air entering the nozzle has stagnation conditions: , and Use Figure D.1 or Table D (a) Calculate the mass flow rate for choked flow (that is, sonic flow at the throat). Hints: See Section 11.7, use Figure D.1 to find density and temperature at M 1 (throat), find...

  • A nozzle is designed to deliver a supersonic air flow, R = 287 J/Kg/K, of Mach...

    A nozzle is designed to deliver a supersonic air flow, R = 287 J/Kg/K, of Mach M = 2.19 The reservoir has a pressure of p0 = 648kPa and T0= 300K. The nozzle exit has an area of 0.233 m^2. The nozzle flow exits into an environment that is kept at constant pressure pb which matches the exit pressure of the nozzle. As long as there are no shock waves appearing in – or outside the nozzle, the complete flow...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 338 Inlet pressure: P1 (kPa) = 555 Inlet Velocity: V1 (m/s) = 121 Area at inlet (cm^2) = 9 Mach number at the exit = 1.56 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT