Question

Poblem Comergini sentropie regim (no shock waves) Consider isentropic flow through a converging-diverging nozzle. The exit area of the nozzle is , and the throat area of the nozzle is . The air entering the nozzle has stagnation conditions: , and Use Figure D.1 or Table D (a) Calculate the mass flow rate for choked flow (that is, sonic flow at the throat). Hints: See Section 11.7, use Figure D.1 to find density and temperature at M 1 (throat), find speed of flow equal to speed of sound for throat gas temperature. (b) Calculate the subsonic and supersonic exit Mach numbers for isentropic flow. c) Calculate the critical pressure. (a) Sketch the nozzle, Mach number and pressure as functions of axial coordinate, x, for supersonic and subsonic exit flows.
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Poblem Comergini sentropie regim (no shock waves) Consider isentropic flow through a converging-diverging nozzle. The exit...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • This problem illustrates the effects of normal shock wave on an isentropic flow through a converging-diverging...

    This problem illustrates the effects of normal shock wave on an isentropic flow through a converging-diverging nozzle. Air flows through an isentropic converging-diverging nozzle The air stagnation pressure and temperature are 7.0 x10 N/m2 and 500 K, respectively The diverging portion of the nozzle has an area ratio of AJA 13.0. A normal shock wave stands in the diverging section where the Mach number is 4.0. Analyze the case to caleulate the Mach number and the static temperature and pressure...

  • A converging-diverging nozzle has a throat area of 1 cm2 and an exit area of 4 cm2. The inlet sta...

    A converging-diverging nozzle has a throat area of 1 cm2 and an exit area of 4 cm2. The inlet stagnation conditions are Po 500 kPa and To 300 K. The nozzle discharges to an infinite surroundings at Po. The flowing medium is air as a perfect gas with k-1.4 Answer the following: i What are the two isentropic flow solutions for this nozzle with M 1 at the throat? What are the Mach number, P, Po and T, To at...

  • Air at stagnation pressure of 700 kPa and temperature of 530 K enters a isentropic converging-diverging...

    Air at stagnation pressure of 700 kPa and temperature of 530 K enters a isentropic converging-diverging nozzle. The throat area of the nozzle is 5 cm2, the exit area is 12.5 cm2. The back pressure is 350 kPa and a normal shock occurs within a diverging section. Determine (a) exit Mach number, (b) change in stagnation pressure, (c) upstream and downstream Mach number of shock (d) cross sectional area where shock occurs (e) back pressure if the flow were isentropic...

  • [15 pts] Consider a converging diverging nozzle with an exit-to-throat area ratio of Ae/At = 1.25...

    [15 pts] Consider a converging diverging nozzle with an exit-to-throat area ratio of Ae/At = 1.25 as shown below. The stagnation pressure upstream of the throat is 8.5 atm and the stagnation temperature is 1000 K. (a) Assume the air is expanded isentropically to supersonic speed at the exit. Determine the following properties at the nozzle exit: Me, Pe, Te, Pe, ue, Poe, Toe (b) If the area ratio in the subsonic part of the converging diverging nozzle, A1/A is...

  • A converging-diverging nozzle is designed for M - 2.5 at the exit. Air is supplied at 1000 kPa and 400 K. At design, what is the exit pressure, temperature and speed? b'At design, wh...

    A converging-diverging nozzle is designed for M - 2.5 at the exit. Air is supplied at 1000 kPa and 400 K. At design, what is the exit pressure, temperature and speed? b'At design, what is the throat pressure and temperature? c. What are the Mach number and speed (m/s) at the throat? I d. If the flow in the nozzle is isentropic, but a normal shock forms at the exit plane, what are the pressure, temperature and Mach number downstream...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • UBAV Air flows through a converging-diverging nozzle diffuser. A normal shock stands in the diverging section...

    UBAV Air flows through a converging-diverging nozzle diffuser. A normal shock stands in the diverging section of the nozzle. Assuming isentropie flow, air as an ideal gas, and constant specific heat determine the state at several locations in the system. Solve wsing equations rather than with the tables Note: The Specific heat ratio and gas constant for air are given as k-1 and R 0.287 kJ/kg-K respectively Give Values Inlet Temperature: TI(K)-340 Inlet pressure: P1 (kPa) - 550 Inlet Velocity:...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. So equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) = 8.81...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT