Question

32. Two loudspeakers, A and B , are driven by the same amplifier and emit sinusoidal waves in phase. Speaker B is 2.00 m to t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a)

Constructive interference takes place when the path difference is n\lambda where n=1,2,3 ...

Path difference at the point Q from the speakers A and B = 3 m - 1 m = 2 m

Therefore, n\lambda = 2 m (or) \lambda = (2 / n) m

We know, Frequency (f) = Velocity (v) / Wavelength (\lambda) ------------------- (1)

Velocity of sound wave in air (v) = 344 m/s

Substituting the value of \lambda and v in equation (1),

f = (344 m/s x n) / 2 m = 172 Hz x n where n=1,2,3 .....

Therefore, the lowest frequency at which constructive interference takes place at at the point Q is 172 Hz

(b)

Destructive interference takes place when the path difference is n/2 x \lambda where n=1,3,5 ...

Path difference at the point Q from the speakers A and B = 3 m - 1 m = 2 m

Therefore, n/2 x \lambda = 2 m (or) \lambda = (4 / n) m

Substituting the value of \lambda and v in equation (1),

f = (344 m/s x n) / 4 m = 86 Hz x n where n=1,3,5 .....

Therefore, the lowest frequency at which destructive interference takes place at the point Q is 86 Hz

Add a comment
Know the answer?
Add Answer to:
32. Two loudspeakers, A and B , are driven by the same amplifier and emit sinusoidal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Interference with Loudspeakers Two loudspeakers, A and B, are driven by the same amplifier and emit...

    Interference with Loudspeakers Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves OUT of phase. The frequency of the waves emitted by each speaker is 172 Hz. You are 8.00 m from speaker A. Take the speed of sound in air to be 344 m/s.(Hint: out of phase means their phase constants differ by pi ) (a) What is the closest you can be to speaker B and be at a point of maximum...

  • Constants Periodic Table ▼ Part A Two loudspeakers, A and B, are driven by the same...

    Constants Periodic Table ▼ Part A Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitted by each speaker is 172 Hz. You are 8.00 m from speaker A. Take the speed of sound in air to be 344 m/s. What is the closest you can be to speaker B and be at a point of perfectly destructive interference? Express your answer in meters. View Available Hint(s)...

  • Two small loudspeakers emit pure sinusoidal waves with frequency-independent amplitude that are in phase. a )...

    Two small loudspeakers emit pure sinusoidal waves with frequency-independent amplitude that are in phase. a ) At the frequencies 0.63 kHz, 1.91 kHz, and 3.19 kHz we have constructive interference at point P. b) At the frequencies 1.27 kHz, 2.55 kHz, and 3.82 kHz the sound at point P is very soft. c) At the frequencies 1.27 kHz, 2.55 kHz, and 3.82 kHz the sound at point P is loud. d) The intensity of the sound at point P does...

  • question 1) Two identical loudspeakers, A and B, are 3.00-m apart. The loudspeakers are driven by...

    question 1) Two identical loudspeakers, A and B, are 3.00-m apart. The loudspeakers are driven by the same amplifier and emit 900-Hz sound waves in all directions. Take the speed of sound in air to be 344 m/s. A small microphone is moved out from point B along a line perpendicular to the line connecting A and B. a) At what distances from B will there be destructive interference? b) At what non-infinite distances from B will there be constructive...

  • Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound...

    Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound with the same wavelength, and they are in phase (they emit peaks of the sound wave at the same time). The location labeled C is a location of constructive interference, and the location labeled D is a location of destructive interference. The distances from the loudspeakers to the locations are as indicated. (Picture may not be to scale!!) (a) What is the wavelength of...

  • Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers a...

    Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers are wired oppositely as in ILL and emit equal amplitude sound waves. Explain how you know that at the point indicated that the interference is maximally constructive, perfectly destructive, or 5.0 m 636 1,25 84 1.25 m 686 Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343...

  • Question 8 (15 Points) Two identical loudspeakers are placed side-by-side two meters apart. They emit sound...

    Question 8 (15 Points) Two identical loudspeakers are placed side-by-side two meters apart. They emit sound at 1800Hz into a room where the speed of sound is 340 m/s. (a) Calculate the path difference for sound traveling from each speaker to a point 4.0 m directly in front of one of the speakers. (5 points) (b) Calculate the number of wavelengths that would fit into this path difference. Round your result to one decimal place. (6 points) (c) Does this...

  • 2. The speed of sound in air is 345 m/s. (7 pts) (a) Speakers A and...

    2. The speed of sound in air is 345 m/s. (7 pts) (a) Speakers A and B operate from the same transmitter and therefore emit sound waves in phase. The frequency of the sound waves is 115 Hz. Speaker B is 6.00 m to the right of speaker A and point P is 13.5 m to the right of speaker B, as shown in the sketch. Is the interference at P constructive or destructive? 6m . 13.5m Ans. constructive

  • 11. + -12 points SerEssen1 14.P.026 My Notes Ask Your Teacher Two loudspeakers are placed above...

    11. + -12 points SerEssen1 14.P.026 My Notes Ask Your Teacher Two loudspeakers are placed above and below one another, as in the figure below, and are driven by the same source at a frequency of 600 Hz. (Assume the speed of sound is 345 m/s, and the observer is located equidistant from both speakers to the right.) (a) What minimum distance should the top speaker be moved back (horizontally to the left) in order to create destructive interference between...

  • Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The...

    Two loudspeakers in a plane are 2.0 m apart and in phase with each other. The speed of sound is 340 m/s. Assume the amplitude of the sound from each speaker is approximately the same at the position of a listener, who is 3.75 m directly in front of one of the speakers. a) (10pts) For what three lowest frequencies will there be a minimum signal (destructive interference)? b) (10pts) For what three lowest frequencies will there be a maximum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT