Question

Problem #3 At very low Reynolds numbers a ball viscometer can be used to measure fluid viscosity by dropping a spherical ball
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Radius of ball (a)=1 cm 110) density of ball = 2500 kg/m3 Se density of liquid = 1,250 kg/m² terminal velocity = 0.15 m/ - (Vx (0.01)2 x(2500 - 1250) *9.81 = 1-816 Nis m2

Add a comment
Know the answer?
Add Answer to:
Problem #3 At very low Reynolds numbers a ball viscometer can be used to measure fluid...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Stokes' law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles...

    Stokes' law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles in liquids achieve terminal velocity quickly. One can measure the time it takes for a particle to fall a certain distance and then use Stokes' law to calculate the viscosity of the liquid. Suppose a steel ball bearing (density 7.8 ✕ 103 kg/m3, diameter 3.2 mm) is dropped in a container of motor oil. It takes 11 s to fall a distance of 0.45...

  • Stokes' law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles...

    Stokes' law describes sedimentation of particles in liquids and can be used to measure viscosity. Particles in liquids achieve terminal velocity quickly. One can measure the time it takes for a particle to fall a certain distance and then use Stokes' law to calculate the viscosity of the liquid. Suppose a steel ball bearing (density 7.8 x 103 kg/m3, diameter 2.0 mm) is dropped in a container of motor oil. It takes 11 s to fall a distance of 0.65...

  • I would like a step by step solution please. Calculate the terminal velocity of two steel...

    I would like a step by step solution please. Calculate the terminal velocity of two steel balls falling through water. The diameters of the two balls are a) cm and b)10cm. Also calculate the Reynolds number for the 10cm sphere. The forces acting on each sphere are gravity, buoyancy and drag Setting up the force equation mg At terminal velocity, the acceleration is zero, as is the net force. Vpsg-Vpwg- 0 1.003 x 10-3 Pa s for water at 20°C...

  • in this lab we will drop a steel ball P steel=8000 kg/m^3, r ball=2.18x10^-3) through the...

    in this lab we will drop a steel ball P steel=8000 kg/m^3, r ball=2.18x10^-3) through the air (nair=1.8x10^-5 Pas, P air= 1.29kg/m^3) and through a viscous soap solution (n soap ~ 9.0 Pa s) you will measure this number in lab, but use this number for prelab.( P soap = 1000kg/m^3) 1Pa= 1N/m 1. (a) assuming that the ball falling through the soap solution experiences visocus drag, find the terminal speed of the ball, the speed at which the weight...

  • The drag force Fp on a smooth sphere falling in water depends on the sphere speed...

    The drag force Fp on a smooth sphere falling in water depends on the sphere speed V, the sphere density P. the density p and dynamic viscosity of water, the sphere diameter Dand the gravitational acceleration g. Using dimensional analysis with p. V and D as repeating variables, determine suitable dimensionless groups to obtain a reneral relationship between the drag force and the other variables. If the same sphere were to fall through air, determine the ratio of the drag...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT