Question

Problem 1 (20 points) A compressor operating at steady state takes in 45 kg/min of methane gas (CH4) at 1 bar, 25°C, 15 m/s,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

its varies with Teargasature Using steady state exutia I 2085 T g = 360 Vookdone = 116.89 *w Buy COMPRESSER

answered by: ANURANJAN SARSAM
Add a comment
Answer #2

its varies with Teargasature Using steady state exutia I 2085 T g = 360 Vookdone = 116.89 *w Buy COMPRESSER

Add a comment
Know the answer?
Add Answer to:
Problem 1 (20 points) A compressor operating at steady state takes in 45 kg/min of methane...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. A gas turbine power plant operating at a steady state consists of a compressor, a...

    2. A gas turbine power plant operating at a steady state consists of a compressor, a heat exchanger, and a turbine. Air enters the compressor with a mass flow rate of 3.8 kg/s at 0.95 bar, 27 °C and exists the turbine at 0.95 bar, 452 °C. Heat transfer to the fluid at the heat exchanger occurs at an average of 537 °C. Other parameters are To = 300 K, po = 0.95 bar, and Wnet = 0.8 MW. The...

  • Problem 2 20) Air enters a compressor operating at steady state at 280 K and exits...

    Problem 2 20) Air enters a compressor operating at steady state at 280 K and exits at a higher pressure and a higher temperature of 1020 K. Specitic heat at constant pressure for air is a constant and equal to 1.003 kJkg K. The mass flow rate is 01 kg's. If the compressor consumes electric power 77 kW Neglect kinetic and potential energy effects and assume air is ideal gas. Find (1) The rate of heat transfer between the compressor...

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

  • Air, modeled as an ideal gas, is compressed at steady state from 1 bar, 300 K,...

    Air, modeled as an ideal gas, is compressed at steady state from 1 bar, 300 K, to 5 bar, 500 K, with 190 kW of power input. Heat transfer occurs at a rate of 25.33 kW from the air to cooling water circulating in a water jacket enclosing the compressor. Neglecting kinetic and potential energy effects, determine the mass flow rate of the air, in kg/s.

  • An axial flow compressor operating at steady state draws air through an opening of 0.02 m2...

    An axial flow compressor operating at steady state draws air through an opening of 0.02 m2 at a volumetric flow rate of 0.6m3/s, and compresses it from a pressure of 1 atm and a temperature of 17 °C to a pressure of 260 kPa, a velocity of 16 m/s and 144°C at the exit. Heat transfer from the compressor to the surroundings occurs at a rate of 3.2 kJ/kg of air flow. Using the ideal gas model and neglecting potential...

  • thermodynamics please help asap An ideal gas with constant heat capacity (C 1 kJ/kg K, R-0.3...

    thermodynamics please help asap An ideal gas with constant heat capacity (C 1 kJ/kg K, R-0.3 kJ/kg K) is to be adiabatically compressed, heated, then expanded in the steady flow system shown below. The compressor and turbine are adiabatic and reversible and kinetic and potential energy effects are negligible. (a) Find the power (kW) required by the compressor. (b) Find the power (kW) delivered by the turbine. Q800 kJ/s P8 barsheat exchanger turbine compressor P- 1 bar Tjs280K P?s 1...

  • Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality...

    Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.3 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of...

  • Separate streams of air and water flow through the compressor and heat exchanger arrangement shown below....

    Separate streams of air and water flow through the compressor and heat exchanger arrangement shown below. Steady state operating data are provided on the figure. Heat transfer with the surroundings can be neglected as can all kinetic and potential energy effects. The air is modeled as an ideal gas. Determine: (a) the total power required by both compressors, in kW. (b) the mass flow rate of the water, in kg/s. Separate streams of air and water flow through the compressor...

  • Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K,...

    Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1200 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Assuming k = 1.4, determine: (a) the temperature of the air at the turbine exit, in K. (b) the percent isentropic turbine efficiency.

  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT