Question

An axial flow compressor operating at steady state draws air through an opening of 0.02 m2...

An axial flow compressor operating at steady state draws air through an opening of 0.02 m2 at a volumetric flow rate of 0.6m3/s, and compresses it from a pressure of 1 atm and a temperature of 17 °C to a pressure of 260 kPa, a velocity of 16 m/s and 144°C at the exit. Heat transfer from the compressor to the surroundings occurs at a rate of 3.2 kJ/kg of air flow. Using the ideal gas model and neglecting potential energy effects

(i) Adopting a best practice approach, illustrate the problem in a diagrammatic form and identify the key assumptions that can be made. (5 marks)

(ii) Using the appropriate tables, identify the necessary properties. (2 marks)

(iii) Identify the complete energy balance equation that can be applied to this problem. (4 marks)

(iv) Determine the velocity of the air at the inlet in m/s and the mass flow rate of the air through the compressor in kg/s. (4 marks)

(v) Determine the power required by the compressor. (2 marks)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An axial flow compressor operating at steady state draws air through an opening of 0.02 m2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An air compressor is operating at a steady state with a mass flow rate of 1.3...

    An air compressor is operating at a steady state with a mass flow rate of 1.3 kg/s. The inlet pressure and temperature are P1 171 kPa and T1 319 K, respectively. The exit pressure and temperature are P2 609 kPa and T2 428 K. respectively. Heat lost from the compressor to the surroundings per unit mass flow is 16 kJ/kg. Air can be assumed as an ideal gas. Kinetic and potential energy changes can be neglected. what is the required...

  • 35% Air (udara) is compressed in an axial flow compressor operating at steady state from 27°C,...

    35% Air (udara) is compressed in an axial flow compressor operating at steady state from 27°C, 1 bar to a pressure of 4,41 bar. The work input required is 96,23 kJ/kg of air flowing through the compressor. Heat transfer from the compressor occurs at the rate of 15,65 kJ/kg at the surface of the compressor where the temperature is 40'C. Kinetic and potential energy changes can be ignored. Assuming air as an ideal gas with constant specific heat, cp =...

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

  • Question 3 Consider an axial compressor with blades installed at given angle with respect to inco...

    Question 3 Consider an axial compressor with blades installed at given angle with respect to incoming airflow The ccmpressor has diameter of 1.0 m and rotates at 3000 rpm. Air mass flow rate through compre sso is 110 kg/s. Pressure and temperature of air at the inlet of the compressor are 1 atm and 300K. Compressor blades are installed at 50° with respect to the axial plane. Conclude whether this compressor can operate at the designed speed of 3000 rpm....

  • A one stage axial air compressor consists of a rotor and a stator, it has a...

    A one stage axial air compressor consists of a rotor and a stator, it has a mean diameter of Im for the rotor and a rotational speed of 7645 RPM. Furthermore: Mass flow rate is 50 kg/s .Inlet static temperature and pressure of Ti 276 K and Pi 85 kPa. .Inlet stagnation temperature and pressure of Toi 290 K and Poi 101.3 kPa. .Inlet absolute velocity C1 166.5 m/s Rotor exit static density (p2) equals to 1.3kg/m3 Axial component of...

  • A high-pressure axial compressor for a jet engine rotates at 15,000 rpm with an overall stagnation...

    A high-pressure axial compressor for a jet engine rotates at 15,000 rpm with an overall stagnation pressure ratio of 8.5. The mass flow rate of air through the compressor is 16 kg/s and the stagnation conditions at inlet are 200 kPa and 450 K. The polytropic efficiency is 91%. a. If the mean radius is 0.24 m and this is constant throughout the compressor, calculate the total-to-total isentropic efficiency of the compressor and show that, for the stage loading to...

  • Problem 2 20) Air enters a compressor operating at steady state at 280 K and exits...

    Problem 2 20) Air enters a compressor operating at steady state at 280 K and exits at a higher pressure and a higher temperature of 1020 K. Specitic heat at constant pressure for air is a constant and equal to 1.003 kJkg K. The mass flow rate is 01 kg's. If the compressor consumes electric power 77 kW Neglect kinetic and potential energy effects and assume air is ideal gas. Find (1) The rate of heat transfer between the compressor...

  • In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure...

    In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure of 100 kPa, and a volumetric flow rate of 5 m3/s and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air then passes through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to the air. The maximum temperature after constant pressure...

  • At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...

    At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 300 m/s. Neglecting potential energy effects and modeling air as an ideal gas, determine a. the velocity of the air at the inlet, in m/s. b. the temperature of the...

  • In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure...

    In a gas turbine engine, the compressor takes in air at a temperature of 15°C, pressure of 100 kPa, and a volumetric flow rate of 5 m/s and compresses it to four times the initial pressure with an isentropic efficiency of 82%. The air then passes through a heat exchanger heated by the turbine exhaust before reaching the combustion chamber. In the heat exchanger 78% of the available heat is given to the air. The maximum temperature after constant pressure...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT